Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting Water with Sunlight. Ellen Backus receives ERC Grant

21.06.2013
Ellen Backus, who is working at the Max Planck Institute for Polymer Research in Mainz, is studying a reaction for environmentally friendly generation of hydrogen. The EU commission has given 1.5 million euros for her to further her research.

The European Research Council awards the ERC Starting Grant for top-level early-career scientists to Ellen Backus, who is working at the MPI-P. The physical chemist will receive funds for her scientific work amounting to 1.5 million euros for the next five years.

With this grant Ellen Backus aims to research the process of splitting water with titanium dioxide and sunlight. She will extend her research group and invest in high-performance measuring devices. "I’m really looking forward to actually watching water molecules during a reaction," Backus says.

Generation of Hydrogen

The native Dutchwoman came to the MPI-P together with director Mischa Bonn from Amsterdam in 2012. Among other things, she is conducting research on the process of photocatalytic water splitting, i.e. the decomposition of water by solar energy. In 1972 Japanese scientist discovered that water in contact with titanium dioxide (TiO2) can be split into hydrogen and oxygen when exposed to sunlight. It is still not completely understood, however, what kind of molecular processes occur during this photocatalytic splitting process. A crucial point is to study how water molecules behave on the interface with titanium dioxide, and how these molecules bind. Ellen Backus aims to watch the interaction of those molecules before, during and after the water splitting.

To do this she uses laser pulses to cause a vibration of the molecules, and then she measures the resonance of the molecular vibration. This allows conclusions to be drawn about the dynamics and interaction of the molecules. In a second step, a further laser pulse takes over the sun’s task: It splits the water molecules.

The pulses are comparable to the flashes of a stroboscope, but with durations of femtoseconds, which are 10-15 of a second. With these ultra-short time intervals it is now possible to sequentially record how the molecules move on the one hand and how they split on the other.

The photocatalytic splitting of water has great potential to produce hydrogen in an ecological and economic way. As previously forecasted, hydrogen as a source of energy will play a decisive role for covering energy requirements in future; however fewer losses have to be achieved during the reaction for it to become economical. Ellen Backus’ scientific work is concentrated on the fundamental processes that occur during splitting in order to understand the energy transport, and the molecules’ bond behavior.

ERC Starting Grants are among the most prestigious grants awarded by the European Research Council for world-class researchers. They give the opportunity for top-level early-career scientists to conduct fundamental research and establish or consolidate their own research team. According to the ERC, last year, 500 research scientists and their projects were funded with a total of about 800 million euros.

Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Coworkers from Germany and abroad are conducting fundamental research on both production and characterization of polymers as well as analyzing their physical and chemical properties. In the beginning of 2013 a total of 551 people were working at the MPI-P. The work force was made up of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists, and 195 technical, administrative and auxiliary staff.

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de/179485/PM8-13eng

More articles from Awards Funding:

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht IVAM Marketing Prize recognizes convincing technology marketing for the tenth time
22.08.2017 | IVAM Fachverband für Mikrotechnik

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>