Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-duplication for manufacturing technology – Millions for Fraunhofer researcher

08.06.2015

Prof. Alexander Böker, head of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm, Germany, has received the renowned ERC Consolidator Grant from the European Research Council (ERC). His research project RepliColl has been awarded funding of 1.9 million Euros over a period of five years. Böker and his team want to learn how to emulate self-replicating biological processes from nature's own DNA synthesis. His research should smooth the way for completely new technologies in manufacturing components for telecommunications and IT as well as for building blocks in the pharmaceutical branch and nanoelectronics.

Nature is master of the astonishing ability to duplicate itself. The self-replication of DNA and RNA molecules is the basis of human life. Prof. Böker would like to transfer this mechanism to artificial systems. “We want to create materials that are able to copy themselves.”

To do this, Böker is developing polymeric colloids – tiny spherical structures between 20 nanometers and one micron in size. Each colloid has two binding sites at which they can be tightly joined to one another. The result is comparable to a string of pearls.

The strings of pearls can also be bound to one another at a third binding site on the colloid. This reaction is reversible, however. Thus, the bonds between strings can be dissolved so that each of them can copy itself. The repetition of this duplicating process leads to the number of strings growing exponentially.

“In addition, if these strings of pearls are also able to autonomously arrange themselves into a well-defined periodic structure, we obtain tiny lattices with high diffraction symmetries. These only allow light rays of a single wavelength to be transmitted, and only in a specific direction. The effect is used in photonics to store and transmit information optically.

To be able to achieve this effect, the lattice structure must be several hundred nanometers in size though – a goal that we would like to achieve using self-duplication", explains Böker. “However, the great challenge posed by these kinds of synthetic systems consists of controlling the interactions between the strings in all directions and those between the reversible and irreversible bonds.”

Once a colloid resembling a “programmable building block” has been developed, it could independently arrange itself into identical copies using a master of the original structure and thereby autonomously produce highly complex, tailored structures. Colloidal formations could be made in this manner in the lab on large scales without large expense.

For industry, that would mean intelligent, resource-efficient, and tailored fabrication of components in the fourth industrial revolution, known as Industry 4.0. Components for electronic displays and storage media are conceivable for instance, as well as nanocapsules to transport medications for the pharmaceutical industry and security features for combating product piracy.

The ERC Consolidator Grant is awarded annually to excellent scientists from throughout the EU in a highly competitive, two-round selection process. Researchers are to use the funding for strengthening their teams and pursuing their most innovative ideas.

“We congratulate Professor Böker for this extraordinary achievement. Excellence and originality in research are important components that enable the Fraunhofer-Gesellschaft to fulfill its mission of being a strong partner to business”, according to Prof. Reimund Neugebauer, President of the Fraunhofer-Gesellschaft. Prof. Sabine Kunst, Minister of Science, Research and Culture for the State of Brandenburg, is also pleased: “The ERC Consolidator Grant is an extraordinary honor that is highly regarded internationally. Through the RepliColl research, Prof. Böker is bringing Brandenburg a project of great portent for the future with great potential for industrial companies throughout the Berlin-Brandenburg capitol region.”

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Further information:
http://www.iap.fraunhofer.de

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>