Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-duplication for manufacturing technology – Millions for Fraunhofer researcher

08.06.2015

Prof. Alexander Böker, head of the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam-Golm, Germany, has received the renowned ERC Consolidator Grant from the European Research Council (ERC). His research project RepliColl has been awarded funding of 1.9 million Euros over a period of five years. Böker and his team want to learn how to emulate self-replicating biological processes from nature's own DNA synthesis. His research should smooth the way for completely new technologies in manufacturing components for telecommunications and IT as well as for building blocks in the pharmaceutical branch and nanoelectronics.

Nature is master of the astonishing ability to duplicate itself. The self-replication of DNA and RNA molecules is the basis of human life. Prof. Böker would like to transfer this mechanism to artificial systems. “We want to create materials that are able to copy themselves.”

To do this, Böker is developing polymeric colloids – tiny spherical structures between 20 nanometers and one micron in size. Each colloid has two binding sites at which they can be tightly joined to one another. The result is comparable to a string of pearls.

The strings of pearls can also be bound to one another at a third binding site on the colloid. This reaction is reversible, however. Thus, the bonds between strings can be dissolved so that each of them can copy itself. The repetition of this duplicating process leads to the number of strings growing exponentially.

“In addition, if these strings of pearls are also able to autonomously arrange themselves into a well-defined periodic structure, we obtain tiny lattices with high diffraction symmetries. These only allow light rays of a single wavelength to be transmitted, and only in a specific direction. The effect is used in photonics to store and transmit information optically.

To be able to achieve this effect, the lattice structure must be several hundred nanometers in size though – a goal that we would like to achieve using self-duplication", explains Böker. “However, the great challenge posed by these kinds of synthetic systems consists of controlling the interactions between the strings in all directions and those between the reversible and irreversible bonds.”

Once a colloid resembling a “programmable building block” has been developed, it could independently arrange itself into identical copies using a master of the original structure and thereby autonomously produce highly complex, tailored structures. Colloidal formations could be made in this manner in the lab on large scales without large expense.

For industry, that would mean intelligent, resource-efficient, and tailored fabrication of components in the fourth industrial revolution, known as Industry 4.0. Components for electronic displays and storage media are conceivable for instance, as well as nanocapsules to transport medications for the pharmaceutical industry and security features for combating product piracy.

The ERC Consolidator Grant is awarded annually to excellent scientists from throughout the EU in a highly competitive, two-round selection process. Researchers are to use the funding for strengthening their teams and pursuing their most innovative ideas.

“We congratulate Professor Böker for this extraordinary achievement. Excellence and originality in research are important components that enable the Fraunhofer-Gesellschaft to fulfill its mission of being a strong partner to business”, according to Prof. Reimund Neugebauer, President of the Fraunhofer-Gesellschaft. Prof. Sabine Kunst, Minister of Science, Research and Culture for the State of Brandenburg, is also pleased: “The ERC Consolidator Grant is an extraordinary honor that is highly regarded internationally. Through the RepliColl research, Prof. Böker is bringing Brandenburg a project of great portent for the future with great potential for industrial companies throughout the Berlin-Brandenburg capitol region.”

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Further information:
http://www.iap.fraunhofer.de

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>