Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second place for Team InVentus from the University of Stuttgart

28.08.2014

Racing success in a headwind

At the Aeolus-Race 2014, the World Championship for Ventomobiles (headwind vehicles), the students from Team InVentus from the University of Stuttgart were able to successfully defend their second place from the previous year at the weekend. At this year’s edition of the race from 18th until 24th August in the Dutch town of Den Helder there were once again top-class competitors with nine vehicles from five nations.


Team InVentus from the University of Stuttgart at the Aelos-Race 2014 in Den Helder/Netherlands.

Photo: University of Stuttgart

The fastest vehicle that could drive directly against the wind with the wind from the surrounding area as a source of energy was the winner. In so doing it was not permitted to drive in a zig-zag style or to traverse like when sailing. Instead of this the teams had to drive directly in the direction of the headwind.

After the gratifying result from the last year, the students wanted to replicate this success and make their vehicle more reliable and quicker. On the basis of the theory learnt in the lectures, they developed the vehicle further and often worked until late into the night on new components.

... more about:
»Communication »Energy »InVentus »headwind »race »vehicles

Initial test runs on the race course directly at the sea confirmed the expectations of the vehicle and therefore there was already a replay of last year’s duel with the Canadian Team Chinook from Montreal on the very first official competition day. After four races respectively in strong winds, InVentus was slightly ahead of the team from Canada, that had to battle sensory problems.

On the next competition day, however, the Canadians were able to solve their problems. They benefitted from the superior hull aerodynamics of their vehicle and secured the victory. The Team InVentus from the University of Stuttgart followed in second place with nearly 80 percent of the wind speed and therefore improved on their performance from the previous year by around 25 percent. The Team “Baltic Thunder” from Kiel secured third place.

Prof. Po Wen Cheng from the Stuttgart Chair for Wind Energy was particularly pleased about the strong result: "The consistent implementation of the theory into practice and the passion with which the students worked on solving complex and interdisciplinary problems is impressive. The clear improvement once again of the vehicle compared to the previous year is also a product of the quality of the teaching at the University of Stuttgart as well as the good framework conditions also outside of the lecture hall."

Since the return of the team after a one year break in 2012, the University of Stuttgart has entered the most successful team from recent years in the Aeolus Race with two second places in a row. For next year the team is pursuing the great objective of driving as the first team faster than the wind. Initial ideas are already in place: among others the aerodynamics are to be improved and the vehicle sensor technology is to become more reliable.

Further information:
Matthias Arnold, Stuttgart Chair of Wind Energy (SWE) at the Institute for Aircraft Construction (IFB), University of Stuttgart, Tel. 0711/685-68273, Email: arnold@ifb.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

Further reports about: Communication Energy InVentus headwind race vehicles

More articles from Awards Funding:

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>