Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist at Kiel University receive EU funding to develop new implantats

22.11.2017

During a heart attack muscle tissue can be damaged or can even die when cells are not provided with enough oxygen. A research team from Kiel University (CAU) has developed a biomaterial to regenerate and restore harmed tissue and lead to faster treatment. The scientists made use of the fact that cells react to stimuli from their environment. Their material imitates natural cell environments by its structure and consistency. This way the scientists can manipulate the behaviour of cells precisely, specifically they can stimulate the growth of the cells. In a newly-launched project, the research team around Christine Selhuber-Unkel wants to test the commercial viability of the material.

It is being funded by the European Research Council with a so-called Proof of Concept Grant. It aims at putting the results of fundamental research into practice and amounts to 150,000 Euros.


The novel biomaterial could be used for implants in the field of regenerative medicine. The Kiel research team wants to test the marketability of the special hydrogel, using the EU grant received.

Copyright: Christine Arndt


Selhuber-Unkel (right), Taale and Arndt from the Institute for Materials Science at Kiel University colonise the new biomaterial with cells in the laboratory at the Faculty of Engineering

Photo: Siekmann/CAU

How cells behave also depends on their environment. Via receptors on their surfaces they identify mechanical stimuli from their environment like the contact to others cells or surfaces. They convert this information into biochemical activity and start to divide, differentiate or move.

Christine Selhuber-Unkel, professor for biocompatible nanomaterials, and her team have developed a material to imitate this cellular mechanism called mechanotransduction. With the help of the material they can control the behaviour of cells. “Due to its similarity to the natural cell environment it can be used as an implant in the field of regenerative medicine, or for storing cells for stem cell therapy”, says the materials scientist.

Now, with the grant from the European Research Council, Selhuber-Unkel and her team want to make the material ready for the market. "Together with potential customers, we want to determine the specific demand for our material, and develop it accordingly. To do so, we have close links with different spin-offs from the CAU, and will contact other companies," announced Selhuber.

The expected outcome of the project is to receive a biocompatible prototype of the material, which can be fabricated cost-effectively in different levels of complexity. To put the results of fundamental research into practice quickly and to strengthen technology transfer is exactly the aim of the initiative of the European Research Council.

“As a university, we want to solve social problems and directly improve peoples’ lives. This is why we’re working on putting our research findings into practice faster. The project gives us impulses as to how this transfer can take place better and more on-target in the future”, Vice President Professor Karin Schwarz, responsible for research and technology transfer at the CAU, is delighted about the first approved funding of this type in Schleswig-Holstein.

A special feature of the new biomaterial is the interconnected hollow channels of only a few micrometres in diameter. They run throughout the soft hydrogel like a system of narrow corridors. This structure is similar to the framework of proteins cells in the human body are surrounded by. When cells are placed in these tunnels within the hydrogel, they react via their surfaces to material around them. “The main advantage of our material is the fact that we can specifically adjust the size of the channels and their arrangement when manufacturing it. This way we can precisely influence the reaction of the cell and let it grow, for example”, says Selhuber-Unkel.

The strong efficacy of the material is even enhanced by its three-dimensionality.
Placed in the fine channels the cells are surrounded by the hydrogel. Thus, approximately 80 percent of the surface of the cell is in contact with the polymer material - far more than in the case of flat environments that only touch about 50 percent of the cell surface. "More contact means more influence on cells," explained Selhuber-Unkel one of the underlying principles of the project “Channelmat” (a combination of “channel” and “material”).

The project is the result of a cooperation between Kiel University’s priority research area Kiel Nano, Surface and Interface Science and the Functional Nanomaterials working group led by Professor Rainer Adelung. The CAU scientists have already registered a patent for their special material.

Photos are available for download under:

http://www.uni-kiel.de/download/pm/2017/2017-362-1.jpg
Caption: Christine Selhuber-Unkel (right), Mohammadreza Taale and Christine Arndt from the Institute for Materials Science at Kiel University colonise the new biomaterial with cells in the laboratory at the Faculty of Engineering.
Photo: Siekmann/CAU

http://www.uni-kiel.de/download/pm/2017/2017-362-2.png
Caption: The novel biomaterial could be used for implants in the field of regenerative medicine. The Kiel research team wants to test the marketability of the special hydrogel, using the EU grant received.
Copyright: Christine Arndt

http://www.uni-kiel.de/download/pm/2017/2017-362-3.jpg
Caption: The hollow channels can be seen on the surface of the new biomaterial. These channels are connected to each other throughout the interior. The soft material mimics the cell environment and influences the behaviour of cells.
Copyright: Katharina Siemsen

Information on the Proof of Concept grant
Since 2007, the European Research Council of the EU has funded excellent fundamental research. With the Proof of Concept grant, innovative research ideas from projects already funded by the European Research Council should be tested for their applicability, and be developed further for the market. The grant, amounting to 150,000 Euros per project, can be used for such things as market research, feasibility studies, or creating a business plan. With the Proof of Concept grant, the European Research Council aims to close a gap between fundamental research and the first phases of application.
More information: https://erc.europa.eu/funding/proof-concept

Contact:
Professor Christine Selhuber-Unkel
Biocompatible Nanomaterials
Institute for Materials Science
Tel.: +49 431 880 6198
E-mail: cse@tf.uni-kiel.de

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text/editing: Julia Siekmann
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni


Details, which are only a millionth of a millimetre in size: This is what the priority research area "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result.

More information at www.kinsis.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Women and lung cancer – the role of sex hormones

22.11.2017 | Life Sciences

Scientist at Kiel University receive EU funding to develop new implantats

22.11.2017 | Awards Funding

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>