Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prizewinning Pair of Mathematicians

The DFG Awards the von Kaven Prize to Two Researchers in the Year of Mathematics

Two outstanding young researchers have been selected to receive the von Kaven Prize in mathematics from the von Kaven Foundation, which is administered by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

The recipients of the award in 2008, the Year of Mathematics, are Professor Dr. Arthur Bartels, who works on topology at the University of Münster, and Dr. Ulrich Görtz, who works on number theory at the University of Bonn. The prizes, which are worth 10,000 euros each, will be awarded at a ceremony during the opening of the annual conference of the German Mathematical Society (DMV) in Erlangen on 15 September 2008. The award will be presented on behalf of the DFG by Professor Thomas Peternell, a member of the mathematics review board and the award selection committee. The prize is funded from the proceeds of the von Kaven Foundation, which was established in December 2004 by mathematician Herbert von Kaven, from Detmold.

Prof. Dr. Arthur Bartels, 36, works in the field of geometric and algebraic topology. After completing his degree in mathematics in 1997 at the University of Mainz, Professor Bartels, who was born in Tübingen, obtained his doctorate from the University of California, San Diego in 1999, before gaining his habilitation in mathematics from the University of Münster in 2005. His work there included a period as a postdoctoral researcher as part of Collaborative Research Centre 478 “Geometrical Structures in Mathematics”, which was funded by the DFG, before being awarded a Heisenberg fellowship by the DFG in 2007.

After spending winter semester 2007/08 as a visiting lecturer at Imperial College London, Bartels then accepted an appointment to a chair at the University of Münster in April 2008. His research focuses primarily on the so-called Farrell Jones Conjecture and related problems. This conjecture is important to understanding the topology of manifolds, in other words, of generalised surfaces, some in higher dimensional spaces.

Dr. Ulrich Görtz, who is 35, works in the field of arithmetic algebraic geometry. After graduating from the University of Münster in 1997, Görtz wrote his thesis at the University of Cologne, where he received his doctorate in 2000. He also gained a wealth of international experience, spending periods at the Institut Henri Poincaré in Paris, the Institute for Advanced Study in Princeton, the Fields Institute in Toronto and at the University of Chicago. In late 2006 Görtz earned his habilitation at the University of Bonn, from where he successfully applied for a Heisenberg fellowship from the DFG in 2007, with which he is now working at the Mathematical Institute in Bonn.

He is particularly interested in algebraic geometric problems which originate from the Langlands program or the theory of Shimura varieties. This also involves relations to numerous other areas in mathematics, for instance to algebraic geometry and number theory, and in particular to representation theory.

Jutta Hoehn | alfa
Further information:

Further reports about: DFG DMV Prizewinning algebraic arithmetic algebraic geometry geometric topology

More articles from Awards Funding:

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht TIB advances implementation of transition towards Open Access in high energy physics
13.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>