Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection of Humans and Environment: Research Project State-Funded with Three Million Euros

03.09.2008
Dark wads of smoke consisting of different gases and dust particles, as it is often the case with blazes, always disturbs residents.

Fire departments have handheld devices which help to determine the concentrations of the different gases, but they can only be used close to the ground. And columns of smoke which ascent to a height and travel for many kilometers over the land and come down far away from their point of origin, cannot be detected with the current technology.

To solve this problem, is the goal of the AirShield research program which is funded by the Federal Ministry of Education and Research (BMBF). Last year this project was initiated by the Chair for Communication Networks of TU Dortmund which is also coordinating the project since the beginning of July 2008.

A swarm of wireless cross-linked unmanned aircrafts (UAV-Unmanned Arial Vehicles), equipped with state-of-the-art gas measuring technology, are supposed to measure gas clouds in the troposphere. The air routes of these flying measurment robots are dynamically determined and continuously adapted, so that the swarm can autonomously follow the pollutants. Thus, detailed forecasts about the spreading are possible. And these forecasts are made available to operational commands. Based on this data, danger averting measures can be planned, such as warning the population , informing them how to behave correctly up to evacuation measures in the most affected areas.

Three industrial partners (Gesellschaft für Gerätebau mbH, Dortmund; Microdrones, Kreuztal; GISConsult, Haltern), five science institutes (from Dortmund, Paderborn, Siegen, Berlin and Leipzig) and the Dortmund Fire Department are participating in the development of this innovative system. The project is funded by the Federal Ministry of Education and Research (BMBF) with three million Euros within the scope of civilian safety research. In the strong competition with other research applications, the Airshield project was successfully nominated as one of the approved schemes from the announcement “Integrated Protection Systems for Rescue and Security Workers”. Project sponsor is the VDI Technologiezentrum, Düsseldorf.

The project coordinator professor Christian Wietfeld, head of the Chair for Communication Networks at TU Dortmund, is very optimistic that AirShield is going to become a big success: “The development of a highly dynamic, interconnected communication network in the air is a big scientific challenge which we are happy to accept. Here we rely on preparatory works which have also received credit in the international context”.

Hans-Jörg Hübner, managing director Gesellschaft für Gerätebau mbH, regards this project as a great opportunity to capture new markets: “Researching into small and light gas sensors for mobile use in the air, safeguards jobs in Dortmund”.

For Klaus Schäfer, chief fire director Dortmund Fire Department, this system means great improvements for the everyday work of fire departments: “The use of self-controlled small air vehicles opens up new chances to prognosticate the spreading of pollutants and to measure their concentration exactly. In the near future AirShield will help to protect humans and environment”. Moreover, areas damaged by flooding or fire, for example, can be observed and measured from above via autonomous drones.

Udo Jürß, CEO Microdrones GmbH, also expects the project to result in an advantage in technology: “The development of remote-controlled drones for civil purposes has just started. The AirShield project will take this versatile technology a big step forward. And we are not going to miss out on the new market which is going to be opened up by this technology”.

“AirShield” stands for “Airborne Remote Sensing for Hazard Inspection by Network Enabled Lightweight Drones”.

Participating in the AirShield project are the following partners:

•Technische Universität Dortmund, Chair for Communication Networks
•Microdrones GmbH, Kreuztal
•Fire Department Dortmund, Institute for Fire Fighting and Rescue Technology – IFR
•Universität Siegen, Chair for Real-Time Learning Systems (Prof. Dr.Ing. Klaus-Dieter Kuhnert)
•GISConsult GmbH, Haltern
•Universität Paderborn, Special Field C.I.K. (Prof. Dr.-Ing. Rainer Koch)
•GfG Gesellschaft für Gerätebau mbH, Dortmund
•Leibnitz Institute for Troposphere Research (Prof. Dr. Eberhard Renner), Leipzig

•TU Berlin, Chair for Innovation Economy (Prof. Dr. Knut Blind)

Two drone animations can be found under the following two links (right click on the link, then “save as …”):

http://www.kn.e-technik.uni-dortmund.de/images/lehrstuhl/Drohne_WMV.wmv
http://www.kn.e-technik.uni-dortmund.de/images/lerhstuhl/MDCockpit2.wmv

Ole Luennemann | alfa
Further information:
http://www.tu-dortmund.de

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>