Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Karolinska Institutet prize awarded to innovative clinical educational researcher

Geoffrey R. Norman, Professor of Clinical Epidemiology and Biostatistics at McMaster University in Hamilton, Ontario, Canada, has been awarded the 2008 Karolinska Institutet Prize for Research in Medical Education. He will receive the award, plus a prize amount of €50,000, at a ceremony in Stockholm, Sweden, on 28 October.

”Professor Norman is awarded the prize for his highly original and innovative research within the field of medical education,” says Professor Peter Aspelin, chair of the Karolinska Institutet prize committee. ”His research has had a significant impact on our understanding of the practice of medicine, as well as our knowledge of complex issues such as pattern recognition, clinical reasoning and clinical problem solving.”

Professor Norman’s primary research is in the area of expert diagnostic reasoning – how clinicians arrive at a diagnosis. His research has revealed that experts use two kinds of knowledge to come to a diagnosis – one is the formal analytical knowledge of signs and symptoms, physiologic mechanisms, and another is experiential knowledge based on the hundreds or thousands of patients they have encountered. Further, experimental studies have shown that these individual experiences remain in memory and are accessible to solve new problems, although the clinician is likely unaware of this retrieval process.

Following from this research is an interest in various aspects of how medical students learn. Professor Norman has contributed to the theoretical foundation of problem-based learning. He has also conducted experimental research in many areas related to education, including anatomy learning from computers, use of simulations in clinical learning, and the role of basic science in medical education. He is currently exploring the use of high ?delity simulation in clinical learning.

”His research is characterised by theoretical rigour and methodical skill. He has been able to contribute considerably to developing the subject area of quantitative analysis. In this subject area, Professor Norman has made good use of his solid background as a physicist and has been able to provide the readers with a clear explanation of statistical methods and how they are used in research,” Aspelin adds.

Professor Norman’s research has showed that transfer, using a previously learned concept to solve a new, apparently different problem, is difficult. Students are typically only able to access a previously learned concept to solve new problems 10% to 30% of the time. However, having students work through parallel, apparently different, problems can have positive effects. Active learning with multiple examples can have large effects on a student's ability to apply concepts to solve new problems.

Professor Norman – who in his own words ”stumbled into the field of medical education” – has demonstrated that conventional approaches to education can sometimes be more effective than cutting-edge technology. He claims that researchers need to understand more about the strengths and limitations of the way people think, so the advantages of technology can be used better. For example, his research has found that attempting to learn anatomy from dynamic virtual reality can actually impede learning if a person has a low spatial ability.

”Sometimes it is important to look at what computers can do that a book can’t, but we must also take into account how our brains process information,” says Geoffrey Norman. ”Computers can help us gain 3D views of the human anatomy, for example, but this does not always produce the best learning results. Our brains find it easier to process information where only two views, such as the front and the back of an object, are displayed.”

”The challenge,” says Professor Norman, ”is to develop new ways of delivering knowledge, based on technology, but derived from an understanding of the way we think and learn.”

”Delivering new information is not enough if it isn't put into practice. We need to understand the psychology that guides the way people assimilate and apply new information,” he says.

Professor Norman’s contributions have been of enormous value for medical practice and subject areas such as knowledge measuring, clinical skills, visual perception, and the development of curricula for health and nursing training programmes all over the world.

Reflecting on his work, Professor Norman says: ”I think my contribution to the world of medical education has been to question everything in order to find interesting things. I never had a great desire to change the world; I just figured that if I find enough interesting or important points during my research, something good will come out of it in the end. If something is interesting enough, the impact will follow. In my case, I am part of a small number of people who have helped to change the world of clinical reasoning through my research.”

Professor Norman played a central role in developing the new ’concept-based’ curriculum at McMaster University in Canada. The curriculum is an evolution of McMaster’s emphasis on problem-based learning (PBL), which has been adopted by over 100 medical schools worldwide. Concept-based learning attempts to combine the best of PBL, with its emphasis on active learning around problems, and traditional learning, which highlight the importance of systematic scientific knowledge of how the body works.

Norman is also a popular lecturer at universities across the world, and a mentor to graduate and undergraduate students. Numerous junior researchers – including the likes of Kevin Eva – working with Professor Norman have since developed into prominent scholars in their own right.

Commenting on his prize win, Professor Norman says: ”It’s an astonishing recognition. The prize, and Karolinska Institutet in particular, are so well known in my field of work so it’s a feather in the cap for both myself personally and for McMaster University. And although I plan to work for another few years yet, this prize is a nice culmination to a long career.”

Sabina Bossi | alfa
Further information:

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>