Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene pioneers follow in Nobel footsteps

Two physicists from The University of Manchester who discovered the world’s thinnest material have scooped a major award for their work.

Professor Andre Geim FRS and Dr Kostya Noveselov of the Centre of Mesoscience and Nanotechnology have been awarded the prestigious Europhysics Prize for discovering graphene – and also their subsequent work to reveal its remarkable electronic properties.

Graphene is a one-atom thick gauze of carbon atoms resembling chicken wire. This incredible new material has rapidly become one of the hottest topics in materials science and solid-state physics.

Presented since 1975, the Europhysics Prize is one of the world’s most prestigious awards for condensed matter physics.

Many winners have subsequently been awarded the Nobel Prize in recognition of their achievements, including the last year Nobel Laureates Albert Fert, Peter Grünberg and Gerhard Ertl.

The Europhysics Prize recognizes recent work by one or more individuals, which, in the opinion of the European Physical Society, represents scientific excellence.

The 2008 Award was presented at the 22nd General Conference of the EPS Condensed Matter Division in Rome.

Aside from the prestige, Prof Geim and Dr Novoselov will share a cash prize of Euros 10,000.

Since the discovery of graphene in 2004, Prof Geim and Dr Novoselov have published numerous research papers in prestigious journals such as Science and Nature, which have demonstrated the exquisite new physics for the material and its potential in novel applications such as transistors just one atom thick and sensors that can detect just a single molecule of a toxic gas.

Prof Geim said: “To receive this award is a great honour. We have been working very hard and putting in long hours for the last five years. Hundreds of other researchers have now joined us in studying graphene.

“But still we have not yet explored even a tip of the iceberg. Graphene continues to surprise us beyond our wildest imagination.

“It works like a magic wand – whatever property or phenomenon you address with graphene, it brings you back a sheer magic.

“A couple of years ago, I was rather pessimistic about graphene-based technologies coming out of research labs any time soon. I have to admit I was wrong. They are coming sooner rather than later.

“In ten years time I believe the word graphene will be as widely known to the public as silicon.”

Jon Keighren | alfa
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>