Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

James Briscoe awarded 2008 EMBO Gold Medal

10.07.2008
The European Molecular Biology Organization (EMBO) announced that James Briscoe of the Medical Research Council’s National Institute for Medical Research will receive the prestigious EMBO Gold Medal for 2008.

Briscoe receives the award in recognition of his discovery that cells integrate time of exposure and concentration of a morphogen to subsequently mount a graded response.

Awarded annually, the EMBO Gold Medal recognises the outstanding contributions of young researchers in the molecular life sciences. Widely regarded as the most prestigious award of its kind in Europe, the Gold Medal highlights the high standards of Europe’s best scientists.

“James Briscoe has revolutionized our understanding of the specification of cell identity in a given spatial setting,” said Hermann Bujard, EMBO Executive Director. “His work exemplifies how talented scientists are advancing the field of molecular biology.”

Four years at Columbia University in New York as a postdoc in Thomas Jessell’s lab laid the foundation for Briscoe’s career as a developmental biologist. James says he “learned” developmental biology from working alongside Jessell and a “great” postdoc in the lab at the time, Johan Ericson.

While at Columbia University, Briscoe began to unravel the control mechanisms of neuronal cell identity in the ventral neural tube – a research theme sustained in his own lab at NIMR since taking up a group leader position in 2000. Specifically, the Briscoe lab studies the central role of the morphogen Sonic Hedgehog (Shh) to specify the position and subtype identity of neurons in the ventral spinal cord.

“We want to understand how neurons - nerve cells – are arranged in the spinal cord,” explains the EMBO Gold Medal winner for audiences other than his peers. “Specifically we are looking at the molecular basis of how different neuronal cells are organized in a developing embryo as a result of signals received from an important molecule called Sonic Hedgehog, or Shh, that is secreted from a particular region in the spinal cord.”

Briscoe and his group discovered a novel mechanism that allows cells to integrate the time of exposure and the concentration of the morphogen Shh to subsequently mount a graded response. In other words, different concentrations of the morphogen activate a signal within the receiving cell for different periods of times. Cells in turn respond to different durations of the signal by activating different genes and therefore becoming different types of nerve cells.

“The discovery that concentration is effectively converted into time is a major shift in our understanding of how a graded signal acts to regulate genes,” stated David Wilkinson, Head of Genetics and Development at NIMR, in his nomination of Briscoe for the EMBO Gold Medal.

James Briscoe’s contribution to the understanding of how cell identity is specified in a given spatial setting has established a new paradigm that may also apply in many other contexts. In addition to Shh, a number of other secreted molecules – members of different protein families – have also been implicated in acting as morphogens to pattern other tissues. “It is possible that other morphogens could use a similar mechanism to control cells, for example early in embryo development during gastrulation,” explains the Gold Medal winner.

“James’s discoveries have revealed general principles that may apply to many other contexts in which graded signals and downstream transcription factors control cell identity,” confirmed David Wilkinson.

Robb Krumlauf, former Head of Division at NIMR who helped to recruit Briscoe to the institute, points out his outstanding qualities at the bench: “At NIMR James rapidly established an independent and creative line of research in his own group. His work is highly rigorous, hits the heart of a problem, and continues to be timely and of wide general interest.”

Jim Smith of the Gurdon Institute agrees with Krumlauf that Briscoe’s work “has been remarkably creative and imaginative while retaining characteristic levels of careful experimentation and scholarship.”

On hearing the news of the EMBO Gold Medal Briscoe referred to the success of his team of researchers: “I have been very fortunate working with very talented and smart people. They taught me a lot, supported me fantastically, and made many significant contributions.”

In 2000, James Briscoe was selected to benefit from the highly competitive EMBO Young Investigator Programme, then in its first year and now renowned for its scientific excellence.

James Briscoe will receive the EMBO Gold Medal and an award of 10,000 euro on
6 September 2008 at the EMBO Members Workshop, Frontiers of Molecular Biology, in Tampere, Finland.

Suzanne Beveridge | alfa
Further information:
http://www.embo.org
http://www.embo.org/about_embo/press/embo_goldmedal08.html

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>