Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Win R&D 100 Award for Ethanol Project

10.07.2008
A research team led by Hans van Leeuwen, an Iowa State University professor of civil, construction and environmental engineering, has been awarded a 2008 R&D 100 Award from R&D Magazine. The researchers are using fungi to clean up and improve the dry-grind ethanol production process. This is the 30th R&D 100 Award presented to researchers affiliated with Iowa State.

Iowa State University and University of Hawai‘i researchers have won national recognition for their work to grow microscopic fungus in leftovers from ethanol production in an effort to improve the efficiency of the corn-to-ethanol conversion process.

The project has been named a winner of a 2008 R&D 100 Award presented by R&D Magazine. The Chicago Tribune has called the awards, presented annually since 1963, the “Oscars of Invention.” This is the 30th R&D 100 Award presented to a project affiliated with Iowa State.

An award letter said editors and a judging panel consider the project “one of the top 100 most technologically significant products introduced into the marketplace over the past year.”

The award goes to Hans van Leeuwen, an Iowa State professor of civil, construction and environmental engineering and the leader of the research project; Anthony L. Pometto III, a professor of food science and human nutrition; Mary Rasmussen, a graduate student in environmental engineering and biorenewable resources and technology; and Samir Khanal, a former Iowa State research assistant professor who’s now an assistant professor of molecular biosciences and bioengineering at the University of Hawai‘i at Mânoa.

The award winners will be featured in the September issue of R&D Magazine. They’ll also be honored at an Oct. 16 banquet at Chicago’s Navy Pier.

Van Leeuwen said the researchers appreciate the recognition of their work and hope it will help them commercialize their processing technology.

The researchers are focused on using fungi to clean up and improve the dry-grind ethanol production process. That process grinds corn kernels and adds water and enzymes. The enzymes break the starches into sugars. The sugars are fermented with yeasts to produce ethanol.

The fuel is recovered by distillation, but there are about five gallons of leftovers for every gallon of fuel that’s produced. Those leftovers, known as stillage, contain solids and other organic material. Most of the solids are removed by centrifugation and dried into distillers dried grains that are sold as livestock feed, primarily for cattle.

The remaining liquid, known as thin stillage, still contains some solids, a variety of organic compounds from corn and fermentation as well as enzymes. Because the compounds and solids can interfere with ethanol production, only about 50 percent of thin stillage can be recycled back into ethanol production. The rest is evaporated and blended with distillers dried grains to produce distillers dried grains with solubles.

The researchers added a fungus, Rhizopus microsporus, to the thin stillage and found it would feed and grow. The fungus removes about 80 percent of the organic material and all of the solids in the thin stillage, allowing the water and enzymes in the thin stillage to be recycled back into production.

The fungus can also be harvested. It’s a food-grade organism that’s rich in protein, certain essential amino acids and other nutrients. It can be dried and sold as a livestock feed supplement. Or it can be blended with distillers dried grains to boost its value as a livestock feed and make it more suitable for feeding hogs and chickens.

Van Leeuwen said the technology can save United States ethanol producers up to $800 million a year in energy costs. He also said the technology can produce ethanol co-products worth another $400 million per year.

The project was also the winner of the 2008 Grand Prize for University Research presented by the American Academy of Environmental Engineers.

Contacts:
Hans van Leeuwen, Civil, Construction and Environmental Engineering, (515) 294-5251, leeuwen@iastate.edu
Anthony L. Pometto III, Food Science and Human Nutrition, (515) 294-9425, apometto@iastate.edu
Mary Rasmussen, Graduate Student in Civil, Construction and Environmental Engineering, (515) 294-2140, mlrasmus@iastate.edu

Samir Khanal, Molecular Biosciences and Bioengineering, University of Hawai‘i at Mânoa, (808) 956-3812, khanal@hawaii.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>