Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study opening new route for combating viruses wins Barenholz Prize for Hebrew University Ph.D. student

25.06.2008
A unique technique for analyzing the function of microRNAs developed by a Hebrew University of Jerusalem doctoral student has led to the discovery of a new mechanism by which viruses evade the human immune system. This discovery has important implications for human intervention in the battle between viruses and humans.

For her work in this field, Naama Elefant, a student of Prof. Hanah Margalit of the Faculty of Medicine at the Hebrew University and an Azrieli fellow, was named one of this year’s winners of the Barenholz Prizes for Creativity and Originality in Applied Computer Science and Computational Biology.

The prizes were awarded on June 4 during the 71st meeting of the Hebrew University Board of Governors. This discovery also was declared by the magazine Nature Medicine as "one of the ten notable advances of the year 2007."

MicroRNA genes are a class of very tiny genes found in a variety of organisms. First discovered in 1993 and at the time considered relatively unimportant, they are now recognized as major players in diverse biological processes.

MicroRNAs are important regulators of protein production. Proteins, the building blocks of the cell, must be produced precisely at the right time and place. MicroRNAs specifically latch on to other genes (their targets) and inhibit the production of the protein products of these genes. Hundreds of microRNAs have already been discovered, but the identity of their target genes remains mostly unknown and presents a great challenge in the field.

Elefant developed a computer algorithm that predicts the targets of microRNAs. Her algorithm, named RepTar, searches the thousands of genes in the human genome and through sequence, structural and physical considerations detects matches to hundreds of microRNAs.

The uniqueness of this technique allowed her to research an interesting group of microRNAs originating in viruses. The presence of microRNAs in viruses raised the intriguing possibility that upon viral infection of a host cell, the virus may use microRNAs as weapons in its battle against the host, inhibiting the production of important host proteins.

Indeed, Elefant’s algorithm predicted that an immune system protein, essential for the immune system’s response against viruses, is inhibited by a viral microRNA. This prediction was confirmed in collaboration with the laboratory of Prof. Ofer Mandelboim of the Hebrew University Faculty of Medicine, who demonstrated experimentally that the microRNA aids the virus in evading the immune system. This study showed for the first time that a viral microRNA inhibits the activity of a gene of the human immune system, placing microRNAs as important players in the battle between viruses and humans.

The discovery holds promising therapeutic implications. It opens a new direction for anti-viral therapy aimed at inhibiting the viral microRNA, and it introduces a possible means to suppress the immune system in autoimmune diseases and transplantations by developing synthetic microRNAs that will mimic the action of natural microRNAs.

The Barenholz Prize is named for its donor, Yehezkel Barenholz, the Dr. Daniel G. Miller Professor of Cancer Research at the Hebrew University-Hadassah Medical School.

Rebecca Zeffert | alfa
Further information:
http://www.huji.ac.il

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>