Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study opening new route for combating viruses wins Barenholz Prize for Hebrew University Ph.D. student

25.06.2008
A unique technique for analyzing the function of microRNAs developed by a Hebrew University of Jerusalem doctoral student has led to the discovery of a new mechanism by which viruses evade the human immune system. This discovery has important implications for human intervention in the battle between viruses and humans.

For her work in this field, Naama Elefant, a student of Prof. Hanah Margalit of the Faculty of Medicine at the Hebrew University and an Azrieli fellow, was named one of this year’s winners of the Barenholz Prizes for Creativity and Originality in Applied Computer Science and Computational Biology.

The prizes were awarded on June 4 during the 71st meeting of the Hebrew University Board of Governors. This discovery also was declared by the magazine Nature Medicine as "one of the ten notable advances of the year 2007."

MicroRNA genes are a class of very tiny genes found in a variety of organisms. First discovered in 1993 and at the time considered relatively unimportant, they are now recognized as major players in diverse biological processes.

MicroRNAs are important regulators of protein production. Proteins, the building blocks of the cell, must be produced precisely at the right time and place. MicroRNAs specifically latch on to other genes (their targets) and inhibit the production of the protein products of these genes. Hundreds of microRNAs have already been discovered, but the identity of their target genes remains mostly unknown and presents a great challenge in the field.

Elefant developed a computer algorithm that predicts the targets of microRNAs. Her algorithm, named RepTar, searches the thousands of genes in the human genome and through sequence, structural and physical considerations detects matches to hundreds of microRNAs.

The uniqueness of this technique allowed her to research an interesting group of microRNAs originating in viruses. The presence of microRNAs in viruses raised the intriguing possibility that upon viral infection of a host cell, the virus may use microRNAs as weapons in its battle against the host, inhibiting the production of important host proteins.

Indeed, Elefant’s algorithm predicted that an immune system protein, essential for the immune system’s response against viruses, is inhibited by a viral microRNA. This prediction was confirmed in collaboration with the laboratory of Prof. Ofer Mandelboim of the Hebrew University Faculty of Medicine, who demonstrated experimentally that the microRNA aids the virus in evading the immune system. This study showed for the first time that a viral microRNA inhibits the activity of a gene of the human immune system, placing microRNAs as important players in the battle between viruses and humans.

The discovery holds promising therapeutic implications. It opens a new direction for anti-viral therapy aimed at inhibiting the viral microRNA, and it introduces a possible means to suppress the immune system in autoimmune diseases and transplantations by developing synthetic microRNAs that will mimic the action of natural microRNAs.

The Barenholz Prize is named for its donor, Yehezkel Barenholz, the Dr. Daniel G. Miller Professor of Cancer Research at the Hebrew University-Hadassah Medical School.

Rebecca Zeffert | alfa
Further information:
http://www.huji.ac.il

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>