Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for successful bone tissue engineering wins Kaye Award for Hebrew U. researcher

23.06.2008
A new and better method for accelerating bone formation in cases of orthopedic injuries and conditions, such as osteoporosis, fractures and disc disorders, has been developed by Nadav Kimelman at the Hebrew University of Jerusalem's Faculty of Dental Medicine.

The method involves increasing oxygen availability in scaffolds in order to accelerate bone formation. The lack of such oxygen supply constitutes a serious impairment to successful tissue engineering.

For his work, Kimelman, who is a doctoral student under Prof. Dan Gazit, was chosen as one of the winners of a Kaye Innovation Award, which was presented on June 4 during the Hebrew University's 71st meeting of the Board of Governors.

The term 'tissue engineering' describes the development of biological replacements for damaged tissues or organs. Biological replacements could act as a solution for the shortage in organ donations and also serve as efficient substitutes for synthetic implants that usually fail in the long run.

For successful engineering of an organ or tissue, the appropriate cells, biological cues and a three-dimensional scaffold should be combined. This is also the case for bone tissue engineering in which cells, genes and scaffolds are combined to heal complex fractures that cannot be repaired otherwise.

One of the major hurdles in successful tissue engineering, however, is the lack of oxygen supply to the newly forming tissue – resulting in cell death and less efficient tissue formation.

Kimelman decided to overcome this fundamental hurdle by utilizing synthetic oxygen carriers as a way to increase oxygen availability in scaffolds. To validate their approach, they combined adult stem cells, programmed to generate bone tissue formation, with injectable scaffolds (hydrogels) containing synthetic oxygen carriers. They then tested the survival of the cells and the amount of bone that was generated.

The results demonstrated significant elevated bone formation and cell survival in the hydrogels supplemented with synthetic oxygen carriers compared to the control groups. They even found that the addition of oxygen carriers also led to more rapid bone formation than the controls.

His results show, for the first time, that synthetic oxygen carriers supplementation enhances and accelerates engineered bone formation, which he believes is achieved by elevating cell survival.

According to Kimelman, however, the results could pave the way for novel therapeutic strategies not only in orthopedics, but also in other medical applications such as cardiology and neurosurgery.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which would benefit the university and society.

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Rebecca Zeffert | The Hebrew University of Jerusal
Further information:
http://media.huji.ac.il
http://www.huji.ac.il

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>