Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for successful bone tissue engineering wins Kaye Award for Hebrew U. researcher

A new and better method for accelerating bone formation in cases of orthopedic injuries and conditions, such as osteoporosis, fractures and disc disorders, has been developed by Nadav Kimelman at the Hebrew University of Jerusalem's Faculty of Dental Medicine.

The method involves increasing oxygen availability in scaffolds in order to accelerate bone formation. The lack of such oxygen supply constitutes a serious impairment to successful tissue engineering.

For his work, Kimelman, who is a doctoral student under Prof. Dan Gazit, was chosen as one of the winners of a Kaye Innovation Award, which was presented on June 4 during the Hebrew University's 71st meeting of the Board of Governors.

The term 'tissue engineering' describes the development of biological replacements for damaged tissues or organs. Biological replacements could act as a solution for the shortage in organ donations and also serve as efficient substitutes for synthetic implants that usually fail in the long run.

For successful engineering of an organ or tissue, the appropriate cells, biological cues and a three-dimensional scaffold should be combined. This is also the case for bone tissue engineering in which cells, genes and scaffolds are combined to heal complex fractures that cannot be repaired otherwise.

One of the major hurdles in successful tissue engineering, however, is the lack of oxygen supply to the newly forming tissue – resulting in cell death and less efficient tissue formation.

Kimelman decided to overcome this fundamental hurdle by utilizing synthetic oxygen carriers as a way to increase oxygen availability in scaffolds. To validate their approach, they combined adult stem cells, programmed to generate bone tissue formation, with injectable scaffolds (hydrogels) containing synthetic oxygen carriers. They then tested the survival of the cells and the amount of bone that was generated.

The results demonstrated significant elevated bone formation and cell survival in the hydrogels supplemented with synthetic oxygen carriers compared to the control groups. They even found that the addition of oxygen carriers also led to more rapid bone formation than the controls.

His results show, for the first time, that synthetic oxygen carriers supplementation enhances and accelerates engineered bone formation, which he believes is achieved by elevating cell survival.

According to Kimelman, however, the results could pave the way for novel therapeutic strategies not only in orthopedics, but also in other medical applications such as cardiology and neurosurgery.

The Kaye Innovation Awards have been given annually since 1994. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which would benefit the university and society.

For further information, contact:

Rebecca Zeffert, Dept. of Media Relations, the Hebrew University, tel: 02-588-1641, cell: 054-882-0661

or Orit Sulitzeanu, Hebrew University spokesperson, tel: 02-5882910, cell: 054-882-0016.

Rebecca Zeffert | The Hebrew University of Jerusal
Further information:

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>