Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bond receives $500,000 Gruber Cosmology Prize for major theoretical insights into the origin of the Universe

13.06.2008
"Professor Bond's work has provided the theoretical framework to interpret the observed inhomogeneities in the fossil radiation left over from the early stages of expansion of the Universe - the Big Bang," as stated in the official citation. His research "has helped us understand the transition from the nearly featureless early Universe to the wonderfully structured world of galaxies, stars and planets today."

Bond will receive the Gruber Cosmology Prize in September, 2008, at the Harvard Smithsonian Center for Astrophysics in Cambridge, Mass., USA. The prize consists of a gold medal and $500,000.

"When Dick Bond got into this field, we had ideas about how the galaxies formed but little evidence to back them up. Dick pointed the way to measurements that greatly improved the evidence, and he showed how to analyze the measurements," says Philip James E. Peebles, PhD, Albert Einstein Professor of Science and professor emeritus of physics at Princeton University. "Thanks to him we now have a tightly checked theory of the evolution of our expanding Universe." Peebles was one of two recipients who received the inaugural Gruber Cosmology Prize in 2000.

Bond's approach to cosmological questions combines a unique blend of original theory and full involvement in the observations made by experimental teams. He has helped usher the field through three decades of what has been described as its "golden age." Bond is known for solving outstanding and important problems through detailed and thorough calculations and comparisons with observation.

Many of the ground- and space-based telescopes that are sending an avalanche of data back to Earth today are doing so thanks to the work of Bond and his collaborators. Especially influential have been Bond's theoretical ideas on the nature and behaviour of the dark matter that holds galaxies together; the "cosmic web" paradigm for structure formation from the nonlinear dynamics of random density fields; the distribution and state of gas; the evolution of quantum fluctuations from inflation in the early Universe and how to probe them observationally. Much of the nomenclature and methodology was developed by Bond.

Working during the 1980s with George Efstathiou of Cambridge University, Bond theorized and developed detailed calculations to demonstrate that minute fluctuations in the cosmic background radiation (CBR), the photon afterglow of the Big Bang, would provide key clues to the fundamental cosmological parameters of shape, size, age and composition, in particular through the imprint of acoustic peaks and troughs on this "first light". Bond and his colleagues at the Canadian Institute for Theoretical Astrophysics at the University of Toronto, where he is a University Professor and past director, developed an impressive array of statistical tools that became standards in the field to analyse increasingly complex CBR experiments.

Milestones in the analyses included unravelling the cosmic consequences for galaxy formation theories of the first detections of CBR fluctuations by the Cosmic Background Explorer (COBE) satellite and a suite of pioneering experiments in the nineties. This was followed, in this decade, by the exquisite mapping of the CBR at increasingly high resolution by experiments exploiting powerful new detector technologies, including the balloon-borne Boomerang, the Cosmic Background Imager in Chile and the Arcminute Cosmology Bolometer Array Receiver at the South Pole where Bond played a key theoretical role. In accordance with the patterns first computed by Bond and Efstathiou, the maps showed that acoustic peaks exist, are viscously damped as the light is freed from matter, and that the escaping photons are polarized.

The analysis of the data supported most cosmologists' view that the Universe is "flat," and that it will expand forever instead of falling back on itself eons from now. At the same time, the analysis was used to reveal the age of the Universe, how much ordinary matter and dark matter exist, and that the dominant component of the density is the mysterious dark energy that does not cluster as dark matter does, but drives a late-time inflation. Bond is now involved in several other major CBR projects, including the European Space Agency's Planck satellite to be launched at the end of the year, the Spider balloon-borne telescope, and the Atacama Cosmology Telescope in Chile. "What we must marvel at is how simple the Universe appears to have been, characterized by a handful of fundamental cosmological parameters that we have now determined to good precision and will determine with very high precision with the new experiments," Bond says.

"To be able to say that in the course of one's career we've understood what the Universe is made of and how all of the structure we can observe arose - profound philosophical questions all - certainly has been and will continue to be an exhilarating ride! What more could you want with a career? Well, we want to detect gravity waves generated in the first moments of the Universe." A ride that, clearly, is far from over.

The Cosmology Prize honours a leading cosmologist, astronomer, astrophysicist or scientific philosopher for theoretical, analytical or conceptual discoveries leading to fundamental advances in the field. Since 2001, the Cosmology Prize has been awarded in collaboration with the International Astronomical Union. The Foundation's other international prizes are in Genetics, Neuroscience, Justice and Women's Rights. Nominations for the 2009 prizes are now open and close on December 15, 2008.

Lars Christensen | alfa
Further information:
http://www.iau.org/public_press/news/release/iau0805/

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>