Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Professors Marc Feldmann and Sir Ravinder Maini Named Winners of the 2008 Dr. Paul Janssen Award for Biomedical Research

Johnson & Johnson today announced that Professor Marc Feldmann, FMedSci, FAA, FRS and Emeritus Professor Sir Ravinder N. Maini, FRCP, FMedSci, FRS of the Kennedy Institute of Rheumatology, Imperial College London have been named the recipients of the 2008 Dr. Paul Janssen Award for Biomedical Research by an independent selection committee of world-renowned scientists.

The award salutes the most passionate and creative scientists in basic or clinical research, whose scientific achievements have made, or have strong potential to make, a measurable impact on human health. Feldmann and Maini were selected for their role in the discovery of tumor necrosis factor-alpha, or TNF-alpha, as an effective therapeutic target for rheumatoid arthritis and other chronic inflammatory conditions afflicting millions worldwide. The award, which includes a $100,000 prize, will be presented to the winners at events in New York and Beerse, Belgium in September.

According to Solomon Snyder, Ph.D., Distinguished Service Professor of Neuroscience, Pharmacology and Psychiatry, Johns Hopkins School of Medicine and Chairman, Janssen Award Selection Committee, "The work of Feldmann and Maini exemplifies the bench-to-bedside approach that Paul Janssen's contributions epitomized. It is extremely rare for researchers to identify a molecular messenger in test tube studies, demonstrate its physiologic relevance in animals and themselves carry these efforts forward to a successful clinical demonstration. Feldmann and Maini did all of this, leading to therapeutic agents of inestimable, lifesaving importance."

Established by Johnson & Johnson, the Dr. Paul Janssen Award for Biomedical Research honors the founder of Janssen Pharmaceutica. Known to his colleagues as "Dr. Paul," Janssen was one of the 20th century's most gifted and passionate researchers, a physician-scientist who helped save millions of lives through his contribution to the discovery and development of more than 80 medicines. Janssen's legacy continues to inspire Johnson & Johnson's commitment to finding innovative cures for unmet medical needs.

Feldmann and Maini have collaborated for more than 20 years in basic research and clinical trials that have transformed the treatment of rheumatoid arthritis and other chronic inflammatory conditions. Feldmann and Maini investigated the role of cytokines, protein messenger molecules that drive inflammation, and found that a single cytokine, TNF, was capable of driving the disease process. This led them to seek ways of blocking TNF, and they chose to use a monoclonal antibody previously developed for an unrelated condition. Clinical trials revealed rapid and dramatic improvement of rheumatoid disease activity with anti-TNF therapy, which led to development of several anti-TNF drugs. As TNF is also involved in other chronic inflammatory diseases, the pioneering work of Feldmann and Maini has led to the routine use of anti-TNF therapy for many prevalent and debilitating conditions.

Feldmann said, "We are very pleased with the widespread clinical applicability of our discovery that a messenger molecule, TNF, was an effective target for treatment not only in rheumatoid arthritis but also other chronic inflammatory conditions, such as inflammatory bowel disease, ankylosing spondylitis and psoriasis. This discovery suggested that other cytokine messenger molecules are also good treatment targets and has led to an emerging branch of medicine -- anti-cytokine therapy. I believe Dr. Janssen would have been intrigued as we explore the range of diseases treatable by these anti-cytokines."

"Our discovery of anti-TNF therapy for disabling chronic inflammatory conditions was the result of contributions made by many colleagues and collaborators and only possible because of advances in molecular medicine and biotechnology," said Maini. "The joy of the fruits of our work is that it made a difference to the lives of so many patients, an outcome that Dr. Janssen especially would have appreciated."

"The work of Feldmann and Maini has dramatically transformed the treatment of chronic inflammatory conditions and given millions of people new hope," said Paul Stoffels, M.D., Company Group Chairman, Research & Development, Pharmaceuticals, Johnson & Johnson. "The passion with which these two scientists have driven forward translational research reflects the leadership and innovation that defined Dr. Paul. Johnson & Johnson is delighted to honor them with the Dr. Paul Janssen Award for Biomedical Research."

Harlan Weisman, M.D., Chief Science and Technology Officer, Medical Devices and Diagnostics, Johnson & Johnson, concurred. "Scientific breakthroughs that have the power to transform an entire field of medicine, such as the discovery of TNF-alpha's role as a therapeutic target, are rare and game-changing. Feldman and Maini's work has tremendous potential to transform research and human health, and it has shed new light on how we study crippling immune mediated inflammatory disorders."

In addition to winning the 2008 Dr. Paul Janssen Award for Biomedical Research, Feldmann and Maini have been widely honored for their work. They received the Albert Lasker Clinical Medical Research Award in 2003 and the Crafoord Prize of the Royal Swedish Academy in 2000, among others.

Notes for editor
About the Selection Committee
The Dr. Paul Janssen Award for Biomedical Research independent selection committee is composed of some of the world's leading scientists, including National Medal of Science winners, Nobel Laureates, members of the National Academy of Sciences, and past winners of the Dr. Paul Janssen Award for Biomedical Research. The 2008 selection committee includes:
-- Solomon Snyder, Ph.D., (chairman) Distinguished Service Professor of
Neuroscience, Pharmacology and Psychiatry, Johns Hopkins School of
Medicine; co-winner, 1978 Albert Lasker Award; winner, 2003 National
Medal of Science (United States)
-- Jean Marie Lehn, Ph.D., Professor, College de France; winner, 1987
Nobel Laureate in Chemistry (France)
-- Craig Mello, Ph.D., Professor, Molecular Medicine, University of
Massachusetts Medical School and investigator, Howard Hughes Medical
Institute; winner, 2006 Nobel Laureate in Physiology or Medicine;
winner, 2006 Dr. Paul Janssen Award for Biomedical Research (United
-- Hartmut Michel, Ph.D., Director, Department of Molecular Membrane
Biology, University of Frankfurt; winner, 1988 Nobel Laureate in
Chemistry (Germany)
-- Edward Scolnick, M.D., Director, Psychiatry Initiative at the Broad
Institute; Former President, Merck Research Laboratories; member,
National Academy of Sciences, the American Academy of Arts and Sciences
and the Institute of Medicine (United States)
-- Sir Richard Sykes, Ph.D., Former Chief Executive Officer,
GlaxoWellcome; Rector, Imperial College London; Fellow of the Royal
Society; Honorary Fellow of the Royal Society of Chemistry and Fellow
of the Academy of Medical Sciences (United Kingdom)
For more information about the award, visit
About Johnson & Johnson
Caring for the world, one person at a time ... inspires and unites the people of Johnson & Johnson. We embrace research and science -- bringing innovative ideas, products and services to advance the health and well-being of people. Our 119,500 employees at more than 250 Johnson & Johnson companies work with partners in health care to touch the lives of over a billion people every day, throughout the world.

Kris Verhoeven | alfa
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>