Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ski slope knowledge transfer partnership wins awards

14.03.2008
The work between the University of Bradford and an artificial ski slope manufacturer has been impressing judges of regional and national award schemes.

West Yorkshire-based Briton Engineering Developments Ltd, who produce the ‘Snowflex’ artificial ski slope system, have been working with the University of Bradford in a Knowledge Transfer Partnership (KTP) to utilise the University’s expertise in polymer engineering and help them address issues with their product.

The partnership was one of nine partnerships selected to receive an award by Knowledge Transfer Partnerships, an organisation funded by the Government’s Technology Strategy Board and Europe's leading programme helping businesses to improve their competitiveness and productivity through the better use of knowledge, technology and skills that reside within the UK knowledge base.

In addition to that, the partnership also won a Yorkshire Forward ‘Innovators/08’ award in the Global Innovation category. The results of both awards were announced on Wednesday 5 March 2008.

Briton Engineering’s Snowflex system comprises a number of polymer components. The skier experiences it as a carpet-like surface and can dig the skis into it to steer, achieving an effect close to the real thing.

Beneath the surface is a layer of polymer foam, or the shock-pad, to absorb impacts and prevent injury. The ski-slope can include features such as jumps and is suitable for both skiing and snowboarding. Further realism is added by keeping the slope sprayed with water so that its frictional properties more closely resemble that of real snow.

Shaun Waddingham, Director of Briton Engineering, said: “The presence of jumps has ensured that some areas of the slope are subject to frequent and heavy impacts. This resulted, over time, in localised failure of the foam layer which fragmented and lost its energy-absorbing capability.

“Repairs were expensive, and downtime on the slope caused some loss of income to the slope operators.

“To address this problem, we linked with the University of Bradford’s School of Engineering, Design and Technology to form a Knowledge Transfer Partnership, financed partly by the Department for Trade and Industry.”

The project, which concluded in September 2006, was worth £115,000 of which just over £77,000 was contributed by the DTI. It was led by Shaun as Industrial Supervisor with Dr John Sweeney, an expert in Polymer Mechanics from the University, working with Mechanical Engineering expert Dr Simon Stewart as the KTP Associate.

Dr Sweeney said: “To find an improved shock-pad foam, a regime of accelerated testing was designed and set up within the Polymer Research Centre laboratories at Bradford.

“A programmable hydraulic testing machine was used to apply repeated impacts on the foams under conditions resembling those you would find in normal ski slope use, which involved soaking the test material with water during testing.

“A parallel set of tests was implemented at Briton using a custom-made testing rig. As a result, a much improved material was identified that is now used in all new installations, including a recently completed £1.7m project at Noeux-les-Mines in France.

“Before the development from the KTP, the company were less willing to contemplate installations outside the UK, where repair visits would have been prohibitively expensive. The new low-maintenance technology in the system brings many benefits, including increasing the range of potential sites across the globe.”

Oliver Tipper | alfa
Further information:
http://www.polyeng.com
http://www.bradford.ac.uk

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>