Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ski slope knowledge transfer partnership wins awards

14.03.2008
The work between the University of Bradford and an artificial ski slope manufacturer has been impressing judges of regional and national award schemes.

West Yorkshire-based Briton Engineering Developments Ltd, who produce the ‘Snowflex’ artificial ski slope system, have been working with the University of Bradford in a Knowledge Transfer Partnership (KTP) to utilise the University’s expertise in polymer engineering and help them address issues with their product.

The partnership was one of nine partnerships selected to receive an award by Knowledge Transfer Partnerships, an organisation funded by the Government’s Technology Strategy Board and Europe's leading programme helping businesses to improve their competitiveness and productivity through the better use of knowledge, technology and skills that reside within the UK knowledge base.

In addition to that, the partnership also won a Yorkshire Forward ‘Innovators/08’ award in the Global Innovation category. The results of both awards were announced on Wednesday 5 March 2008.

Briton Engineering’s Snowflex system comprises a number of polymer components. The skier experiences it as a carpet-like surface and can dig the skis into it to steer, achieving an effect close to the real thing.

Beneath the surface is a layer of polymer foam, or the shock-pad, to absorb impacts and prevent injury. The ski-slope can include features such as jumps and is suitable for both skiing and snowboarding. Further realism is added by keeping the slope sprayed with water so that its frictional properties more closely resemble that of real snow.

Shaun Waddingham, Director of Briton Engineering, said: “The presence of jumps has ensured that some areas of the slope are subject to frequent and heavy impacts. This resulted, over time, in localised failure of the foam layer which fragmented and lost its energy-absorbing capability.

“Repairs were expensive, and downtime on the slope caused some loss of income to the slope operators.

“To address this problem, we linked with the University of Bradford’s School of Engineering, Design and Technology to form a Knowledge Transfer Partnership, financed partly by the Department for Trade and Industry.”

The project, which concluded in September 2006, was worth £115,000 of which just over £77,000 was contributed by the DTI. It was led by Shaun as Industrial Supervisor with Dr John Sweeney, an expert in Polymer Mechanics from the University, working with Mechanical Engineering expert Dr Simon Stewart as the KTP Associate.

Dr Sweeney said: “To find an improved shock-pad foam, a regime of accelerated testing was designed and set up within the Polymer Research Centre laboratories at Bradford.

“A programmable hydraulic testing machine was used to apply repeated impacts on the foams under conditions resembling those you would find in normal ski slope use, which involved soaking the test material with water during testing.

“A parallel set of tests was implemented at Briton using a custom-made testing rig. As a result, a much improved material was identified that is now used in all new installations, including a recently completed £1.7m project at Noeux-les-Mines in France.

“Before the development from the KTP, the company were less willing to contemplate installations outside the UK, where repair visits would have been prohibitively expensive. The new low-maintenance technology in the system brings many benefits, including increasing the range of potential sites across the globe.”

Oliver Tipper | alfa
Further information:
http://www.polyeng.com
http://www.bradford.ac.uk

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>