Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rene Gerritsma receives a EUR 1.5 million ERC Starting Grant for quantum simulations

11.07.2013
Mainz physicist will develop a quantum simulator that will be used to study the quantum physics of solids

Rene Gerritsma of Johannes Gutenberg University Mainz (JGU) has been awarded funding from the European Research Council in support of his work on quantum simulations with ultracold atoms and ions.

His project on "Hybrid Atom-Ion Quantum Systems" will be funded by a prestigious ERC Starting Grant worth EUR 1.5 million. The central goal of the project is to study the properties of solids by using a quantum simulator based on a hybrid system of cold ions interacting with a degenerate Fermi gas.

More than 30 years ago, Richard Feynman proposed that quantum simulators could be used to study large many-body quantum systems. Feynman realized that it is beyond the ability of existing computer technology to calculate many properties of such systems. For example, just storing the quantum state of a comparably small system of only 50 electrons would already require a computer with an inconceivable amount of RAM capacity. In this case, 2 to the power of 50 complex numbers would have to be stored, corresponding to quadrillions of bits. In contrast, Feynman's proposed quantum simulator would be able to cope with the task of investigating the properties of many-body quantum systems such as solids.

Crystalline solids consist of a regular lattice of positively charged atomic cores (ions) surrounded by a Fermi gas of electrons. Important properties of solids, such as their electrical conductivity, are strongly influenced by the interplay between these electrons and the lattice atoms. Lattice vibrations (sound waves) also play a major role including the mediation of the electron-electron interactions thought to be responsible for high-temperature superconductivity. Although some phase transitions that occur in solids, e.g. the transition from a Mott insulator to a superconductor, can be studied using a quantum simulator that employs only ultracold atoms, there is to date no atomic model system that can simulate the effect of real lattice vibrations on electrons.

In his project, Gerritsma plans to use ytterbium ion crystals (simulating the ionic core lattice) and an ultracold gas of lithium atoms (simulating an electronic Fermi gas). By letting the atoms and ions interact in a controlled manner, this model system may provide a deeper insight into the properties of solids and a route towards new quantum simulators of electron-lattice interactions. For the first time, the focus will be on venturing deep into the ultracold regime of atom-ion interactions, where quantum mechanical effects dominate. Tools originally developed for implementing quantum information processing make it possible to employ ions as sensors to probe the properties of the quantum simulator and these tools could even be used to detect individual atoms.

Rene Gerritsma studied Physics at the University of Groningen in the Netherlands and received his doctorate from the University of Amsterdam. He then worked as a postdoctoral researcher at the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria. Since late 2011, he has been a member of the Quantum, Atomic, and Neutron Physics (QUANTUM) group at the Institute of Physics of Johannes Gutenberg University Mainz. The ERC Starting Grant gives him the opportunity to establish his own research group. Gerritsma's experimental research in the QUANTUM work group is supported by his collaboration with theoretical physicist Professor Walter Hoffstetter of the Goethe University in Frankfurt and the Transregional Collaborative Research Center 49 on "Condensed Matter Systems with Variable Many-Body Interactions."

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ercgrant_gerritsma_01.jpg

The figure schematically shows a Paul trap with four main electrodes, in which a crystal of Yb+ ions is trapped and overlapped with an optically-trapped cloud of lithium ions. source: Rene Gerritsma

Futher information:
Dr. Rene Gerritsma
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20203 or 39-24606
fax +49 6131 39-25179
e-mail: rene.gerritsma@uni-mainz.de
Weitere Informationen:
http://arxiv.org/abs/1304.4972 (scientific proposal)

Petra Giegerich | idw
Further information:
http://www.quantum.physik.uni-mainz.de/

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>