Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rene Gerritsma receives a EUR 1.5 million ERC Starting Grant for quantum simulations

11.07.2013
Mainz physicist will develop a quantum simulator that will be used to study the quantum physics of solids

Rene Gerritsma of Johannes Gutenberg University Mainz (JGU) has been awarded funding from the European Research Council in support of his work on quantum simulations with ultracold atoms and ions.

His project on "Hybrid Atom-Ion Quantum Systems" will be funded by a prestigious ERC Starting Grant worth EUR 1.5 million. The central goal of the project is to study the properties of solids by using a quantum simulator based on a hybrid system of cold ions interacting with a degenerate Fermi gas.

More than 30 years ago, Richard Feynman proposed that quantum simulators could be used to study large many-body quantum systems. Feynman realized that it is beyond the ability of existing computer technology to calculate many properties of such systems. For example, just storing the quantum state of a comparably small system of only 50 electrons would already require a computer with an inconceivable amount of RAM capacity. In this case, 2 to the power of 50 complex numbers would have to be stored, corresponding to quadrillions of bits. In contrast, Feynman's proposed quantum simulator would be able to cope with the task of investigating the properties of many-body quantum systems such as solids.

Crystalline solids consist of a regular lattice of positively charged atomic cores (ions) surrounded by a Fermi gas of electrons. Important properties of solids, such as their electrical conductivity, are strongly influenced by the interplay between these electrons and the lattice atoms. Lattice vibrations (sound waves) also play a major role including the mediation of the electron-electron interactions thought to be responsible for high-temperature superconductivity. Although some phase transitions that occur in solids, e.g. the transition from a Mott insulator to a superconductor, can be studied using a quantum simulator that employs only ultracold atoms, there is to date no atomic model system that can simulate the effect of real lattice vibrations on electrons.

In his project, Gerritsma plans to use ytterbium ion crystals (simulating the ionic core lattice) and an ultracold gas of lithium atoms (simulating an electronic Fermi gas). By letting the atoms and ions interact in a controlled manner, this model system may provide a deeper insight into the properties of solids and a route towards new quantum simulators of electron-lattice interactions. For the first time, the focus will be on venturing deep into the ultracold regime of atom-ion interactions, where quantum mechanical effects dominate. Tools originally developed for implementing quantum information processing make it possible to employ ions as sensors to probe the properties of the quantum simulator and these tools could even be used to detect individual atoms.

Rene Gerritsma studied Physics at the University of Groningen in the Netherlands and received his doctorate from the University of Amsterdam. He then worked as a postdoctoral researcher at the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria. Since late 2011, he has been a member of the Quantum, Atomic, and Neutron Physics (QUANTUM) group at the Institute of Physics of Johannes Gutenberg University Mainz. The ERC Starting Grant gives him the opportunity to establish his own research group. Gerritsma's experimental research in the QUANTUM work group is supported by his collaboration with theoretical physicist Professor Walter Hoffstetter of the Goethe University in Frankfurt and the Transregional Collaborative Research Center 49 on "Condensed Matter Systems with Variable Many-Body Interactions."

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_ercgrant_gerritsma_01.jpg

The figure schematically shows a Paul trap with four main electrodes, in which a crystal of Yb+ ions is trapped and overlapped with an optically-trapped cloud of lithium ions. source: Rene Gerritsma

Futher information:
Dr. Rene Gerritsma
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-20203 or 39-24606
fax +49 6131 39-25179
e-mail: rene.gerritsma@uni-mainz.de
Weitere Informationen:
http://arxiv.org/abs/1304.4972 (scientific proposal)

Petra Giegerich | idw
Further information:
http://www.quantum.physik.uni-mainz.de/

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>