Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins: It all depends on a correct folding plan - F.-Ulrich Hartl receives Heinrich Wieland Prize

27.10.2011
What do neurodegenerative diseases such as Chorea Huntington, Alzheimer's and Parkinson's disease have in common? They all occur more and more frequently in an aging society, and wrongly folded, clumped proteins play a central role in disease development.

Once scientists have successfully decoded the molecular mechanisms of protein folding, new approaches for prevention, diagnosis and therapy could emerge. The Heinrich Wieland Prize 2011 will be awarded to Prof. F.-Ulrich Hartl, director at the MPI of Biochemistry in Martinsried, for his pioneering work in the field of protein folding. The award is sponsored by the Boehringer Ingelheim Foundation and comes with a prize money of 50,000 Euros.

The award ceremony will take place on 27 October 2011 from 02.00 – 04.00 p.m. in the Baeyer Auditorium of the LMU Munich (Faculty of Chemistry and Pharmacy, LMU Munich, Butenandtstr. 13, House F, Room FU 1,017, 81477 Munich). Journalists are cordially invited to join in the ceremony. Please register by e-mail to communications@bifonds.de.

Cells constantly produce thousands of different proteins involved in every bioprocess. Most proteins can only fulfill their biological functions – e.g. as enzymes in cell metabolism, antibodies in immune defense or structural proteins in the muscular system – when they adopt a defined, three-dimensional structure. Hartl’s pioneering work has changed our way of thinking of how proteins fold within cells. Contrary to the previously held view that all proteins fold spontaneously and of their own accord, the scientist developed a new concept – namely that protein folding is a complex process requiring the assistance of other proteins, known as chaperones.

Many chaperones belong to the stress or heat shock proteins. They not only facilitate the correct folding of newly synthesized proteins, but also step in during stress situations, for instance to repair any proteins that misfolded due to high temperatures. Furthermore, molecular chaperones now play an important role in biotechnology. Biotechnological companies use, for example, bacterial cells with an increased chaperone content to produce large amounts of active forms of proteins required for the production of drugs. The groundwork for this was provided, among other things, by one of Hartl’s discoveries – the “chaperonin”, a cylindrically formed molecule which folds proteins inside a protected chamber. In the past few years, Hartl has concentrated on the analysis of those neurodegenerative diseases that are characterized by the misfolding and aggregation of certain proteins.

“Professor Hartl’s research is a prime example of how basic research can find its way into biotechnological or medical application – in the long run, the results also have the potential to provide progress for the good of patients afflicted by such diseases”, declared Professor Dr. Konrad Sandhoff, chairman of the board of trustees of the Heinrich Wieland Prize.

Franz-Ulrich Hartl studied medicine and obtained his doctoral degree in Heidelberg in 1985. He then moved to the laboratory of Walter Neupert in Munich, where he first worked as a post-doc and then as a group leader. In 1991 he accepted a professorship in cell biology and genetics at Memorial Sloan-Kettering Cancer Center and Cornell Medical College in New York. He returned to Germany in 1997 to take up his present postion as director at the Max Planck Institute of Biochemistry in Martinsried, near Munich.

The international Heinrich Wieland Prize (HWP), which comes with a prize money of 50,000 Euros, honours outstanding research on biologically active molecules and systems and its clinical impact in the areas of chemistry, biochemistry and physiology. It is named after the German chemist and Nobel Prize winner Heinrich Otto Wieland (1877 – 1957), who was professor of chemistry in Munich for many years. The prize has been awarded annually by an independent board of trustees since 1964. The Boehringer Ingelheim Foundation assumed sponsorship of the prize in 2011. The Boehringer Ingelheim Foundation is an independent, non-profit-making foundation for the promotion of medical, biological, chemical and pharmaceutical research.

Media contacts:
Jürgen Lösch
Communication
Boehringer Ingelheim Foundation
Schlossmühle / Grabenstr. 46
55262 Heidesheim
Tel. +49 (0)6132 / 89 85 16
Fax +49 (0)6132 / 89 85 11
E-Mail: communications@bifonds.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.boehringer-ingelheim-stiftung.de/

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>