Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins: It all depends on a correct folding plan - F.-Ulrich Hartl receives Heinrich Wieland Prize

27.10.2011
What do neurodegenerative diseases such as Chorea Huntington, Alzheimer's and Parkinson's disease have in common? They all occur more and more frequently in an aging society, and wrongly folded, clumped proteins play a central role in disease development.

Once scientists have successfully decoded the molecular mechanisms of protein folding, new approaches for prevention, diagnosis and therapy could emerge. The Heinrich Wieland Prize 2011 will be awarded to Prof. F.-Ulrich Hartl, director at the MPI of Biochemistry in Martinsried, for his pioneering work in the field of protein folding. The award is sponsored by the Boehringer Ingelheim Foundation and comes with a prize money of 50,000 Euros.

The award ceremony will take place on 27 October 2011 from 02.00 – 04.00 p.m. in the Baeyer Auditorium of the LMU Munich (Faculty of Chemistry and Pharmacy, LMU Munich, Butenandtstr. 13, House F, Room FU 1,017, 81477 Munich). Journalists are cordially invited to join in the ceremony. Please register by e-mail to communications@bifonds.de.

Cells constantly produce thousands of different proteins involved in every bioprocess. Most proteins can only fulfill their biological functions – e.g. as enzymes in cell metabolism, antibodies in immune defense or structural proteins in the muscular system – when they adopt a defined, three-dimensional structure. Hartl’s pioneering work has changed our way of thinking of how proteins fold within cells. Contrary to the previously held view that all proteins fold spontaneously and of their own accord, the scientist developed a new concept – namely that protein folding is a complex process requiring the assistance of other proteins, known as chaperones.

Many chaperones belong to the stress or heat shock proteins. They not only facilitate the correct folding of newly synthesized proteins, but also step in during stress situations, for instance to repair any proteins that misfolded due to high temperatures. Furthermore, molecular chaperones now play an important role in biotechnology. Biotechnological companies use, for example, bacterial cells with an increased chaperone content to produce large amounts of active forms of proteins required for the production of drugs. The groundwork for this was provided, among other things, by one of Hartl’s discoveries – the “chaperonin”, a cylindrically formed molecule which folds proteins inside a protected chamber. In the past few years, Hartl has concentrated on the analysis of those neurodegenerative diseases that are characterized by the misfolding and aggregation of certain proteins.

“Professor Hartl’s research is a prime example of how basic research can find its way into biotechnological or medical application – in the long run, the results also have the potential to provide progress for the good of patients afflicted by such diseases”, declared Professor Dr. Konrad Sandhoff, chairman of the board of trustees of the Heinrich Wieland Prize.

Franz-Ulrich Hartl studied medicine and obtained his doctoral degree in Heidelberg in 1985. He then moved to the laboratory of Walter Neupert in Munich, where he first worked as a post-doc and then as a group leader. In 1991 he accepted a professorship in cell biology and genetics at Memorial Sloan-Kettering Cancer Center and Cornell Medical College in New York. He returned to Germany in 1997 to take up his present postion as director at the Max Planck Institute of Biochemistry in Martinsried, near Munich.

The international Heinrich Wieland Prize (HWP), which comes with a prize money of 50,000 Euros, honours outstanding research on biologically active molecules and systems and its clinical impact in the areas of chemistry, biochemistry and physiology. It is named after the German chemist and Nobel Prize winner Heinrich Otto Wieland (1877 – 1957), who was professor of chemistry in Munich for many years. The prize has been awarded annually by an independent board of trustees since 1964. The Boehringer Ingelheim Foundation assumed sponsorship of the prize in 2011. The Boehringer Ingelheim Foundation is an independent, non-profit-making foundation for the promotion of medical, biological, chemical and pharmaceutical research.

Media contacts:
Jürgen Lösch
Communication
Boehringer Ingelheim Foundation
Schlossmühle / Grabenstr. 46
55262 Heidesheim
Tel. +49 (0)6132 / 89 85 16
Fax +49 (0)6132 / 89 85 11
E-Mail: communications@bifonds.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de
http://www.boehringer-ingelheim-stiftung.de/

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>