Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein design – A construction kit full of opportunities

25.03.2015

It was a very successful application for Birte Höcker. The researcher from the Max Planck Institute for Developmental Biology has now received an ERC Consolidator Grant and prize money of nearly 2 Million Euros from the European Research Council (ERC). She and her team can now follow up on new ideas about protein design, their scientific discipline.

Höcker, a biochemist, studies the evolution of proteins and uses her knowledge to construct new ones. She could already show that the diversity of proteins formed from smaller fragments, which led her to a new scientific approach: Use these parts and recombine them according to a construction kit. Fittingly, her ERC project application is called “Protein Lego”.


Dr. Birte Höcker

Jörg Abendroth / Max Planck Institute for Developmental Biology

“With this project application we follow a completely new approach to protein design”, says Birte Höcker. “We identify stable fragments of well-known protein structures, recombine them, and so we see new complex and functional proteins coming to life.”

The scientist is fascinated by the composition of these essential proteins. “In the first place, the activity of proteins makes life possible”, states Höcker. “And I am particularly interested in all these little details of their structures – how they differ from each other and why they fold the way they do.”

The deeper understanding of protein structures can help to build tailor-made proteins for use in biotechnology, medicine and synthetic biology. Protein design has a broad application range, for example creating new enzymes for manufacturing fine chemicals or degrading toxic material, for new protein based drugs or even as biosensors as tools in basic research.

“Currently we focus primarily on the basics of this technology”, Höcker underlines. Together with her research group she wants to lay the foundation, so that tailor-made proteins for specific applications can be constructed in the near future.

The ERC Grants are the most coveted awards in the European research landscape. Each year the European Research Council supports upcoming scientists of any nationality with Consolidator Grants. The awardees have to carry out excellent research projects and should have finished their doctoral degree at least seven years ago.

About Birte Höcker:
Dr. Birte Höcker finished her doctoral degree in biochemistry in 2003 at the University of Cologne, before she worked as a postdoc at the Duke University Medical Center in the USA. Since 2006, she is an Independent Research Group Leader at the Max Planck Institute for Developmental Biology in Tübingen, Germany.


About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 360 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Weitere Informationen:

http://www.mpg.de/9042487/erc-consolidator-grants-2014
http://erc.europa.eu/sites/default/files/press_release/files/press_release_cog20...

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>