Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Matthias Kling receives Röntgen Prize 2011

22.07.2011
Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”.

Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”. This award, sponsored by several private companies from the City of Gießen, is primarily devoted to young scientists who have done excellent work in fundamental radiation physics or fundamental radiation biology.

Matthias Kling, born in Hanover in 1972, studied physics at the Georg-August University, Göttingen, where he earned his diploma in 1998. Successively, he studied laser physics at the Friedrich-Schiller University, Jena, and performed research on the femtosecond spectroscopy of peroxide molecules in the group of Professor Michael Buback in Göttingen. Following his dissertation and a postdoctoral stay in Göttingen, he joined Professor Charles Harris in 2003 at the University of California (UC) Berkeley, USA, as a “Feodor-Lynen” research fellow of the Alexander von Humboldt Foundation. Toward the end of 2004, he joined the group of Prof. Marc Vrakking at AMOLF in Amsterdam, The Netherlands. Here, supported by a Marie-Curie stipend of the European Union, he started to investigate ultrafast processes in atoms and small molecules on an attosecond time scale (one attosecond is a billionth of a billionth of a second). Since 2007, Professor Matthias Kling has been leading the DFG-funded Emmy-Noether group “Attosecond Imaging” at the Max Planck Institute of Quantum Optics, where his group is part of the Laboratory for Attosecond Physics of Prof. Ferenc Krausz. Since 2009, Professor Kling also holds an assistant professorship at Kansas State University in Manhattan, KS, USA, and in 2011 he became a visiting professor at the King-Saud University in Riyadh, Saudi Arabia.

Prof. Kling’s team is performing research on the control and observation of collective electron motion on nanostructured surfaces and in isolated nanoparticles. For this purpose, they use ultrashort, intense near-infrared light flashes, consisting of only a few cycles, and attosecond light flashes in the extreme ultraviolet. Using these ultrashort light flashes, the researchers can observe processes such as the emission and acceleration of electrons on the natural, attosecond time scale of their motion. Nanometer spatial resolution is provided in the “attosecond nano-microscope” by employing a photo-electron emission microscope. Using this attosecond nano-microscope offers the possibility of resolving electron motion on nanostructured surfaces with the highest temporal and spatial resolution. The nano-microscope can be used to study the control of electrons in nanostructures by light waves with unprecedented detail. Such studies are an important step toward the realization of lightwave nano-electronics, which has the potential to increase the speed of electronics by up to 5 orders of magnitude into the petahertz regime. Professor Kling performs the research on nanostructures in close collaboration with colleagues in Germany [Ulf Kleineberg (LMU Munich), Eckart Rühl (FU Berlin), Thomas Fennel (University of Rostock), and Ferenc Krausz] and the US [Mark Stockman (GSU Atlanta, USA)].

The Röntgen Prize will be awarded on November 25th at the official academic ceremony in Gießen. Olivia Meyer-Streng

Contact:

Prof. Dr. Matthias Kling
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 234
e-mail: matthias.kling@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>