Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Matthias Kling receives Röntgen Prize 2011

22.07.2011
Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”.

Professor Matthias Kling, leader of the “Attosecond Imaging” Research Group at the Max Planck Institute of Quantum Optics, Garching (near Munich), has received this year’s Röntgen Prize from the Justus-Liebig-University of Gießen, Germany, in recognition of his contributions to the development of “attosecond nano-microscopy”. This award, sponsored by several private companies from the City of Gießen, is primarily devoted to young scientists who have done excellent work in fundamental radiation physics or fundamental radiation biology.

Matthias Kling, born in Hanover in 1972, studied physics at the Georg-August University, Göttingen, where he earned his diploma in 1998. Successively, he studied laser physics at the Friedrich-Schiller University, Jena, and performed research on the femtosecond spectroscopy of peroxide molecules in the group of Professor Michael Buback in Göttingen. Following his dissertation and a postdoctoral stay in Göttingen, he joined Professor Charles Harris in 2003 at the University of California (UC) Berkeley, USA, as a “Feodor-Lynen” research fellow of the Alexander von Humboldt Foundation. Toward the end of 2004, he joined the group of Prof. Marc Vrakking at AMOLF in Amsterdam, The Netherlands. Here, supported by a Marie-Curie stipend of the European Union, he started to investigate ultrafast processes in atoms and small molecules on an attosecond time scale (one attosecond is a billionth of a billionth of a second). Since 2007, Professor Matthias Kling has been leading the DFG-funded Emmy-Noether group “Attosecond Imaging” at the Max Planck Institute of Quantum Optics, where his group is part of the Laboratory for Attosecond Physics of Prof. Ferenc Krausz. Since 2009, Professor Kling also holds an assistant professorship at Kansas State University in Manhattan, KS, USA, and in 2011 he became a visiting professor at the King-Saud University in Riyadh, Saudi Arabia.

Prof. Kling’s team is performing research on the control and observation of collective electron motion on nanostructured surfaces and in isolated nanoparticles. For this purpose, they use ultrashort, intense near-infrared light flashes, consisting of only a few cycles, and attosecond light flashes in the extreme ultraviolet. Using these ultrashort light flashes, the researchers can observe processes such as the emission and acceleration of electrons on the natural, attosecond time scale of their motion. Nanometer spatial resolution is provided in the “attosecond nano-microscope” by employing a photo-electron emission microscope. Using this attosecond nano-microscope offers the possibility of resolving electron motion on nanostructured surfaces with the highest temporal and spatial resolution. The nano-microscope can be used to study the control of electrons in nanostructures by light waves with unprecedented detail. Such studies are an important step toward the realization of lightwave nano-electronics, which has the potential to increase the speed of electronics by up to 5 orders of magnitude into the petahertz regime. Professor Kling performs the research on nanostructures in close collaboration with colleagues in Germany [Ulf Kleineberg (LMU Munich), Eckart Rühl (FU Berlin), Thomas Fennel (University of Rostock), and Ferenc Krausz] and the US [Mark Stockman (GSU Atlanta, USA)].

The Röntgen Prize will be awarded on November 25th at the official academic ceremony in Gießen. Olivia Meyer-Streng

Contact:

Prof. Dr. Matthias Kling
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 234
e-mail: matthias.kling@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>