Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Immanuel Bloch receives Senior BEC Award 2013

09.08.2013
The Scientific and Award Committees of the Bose–Einstein Conference Series honours Prof. Immanuel Bloch, Director at the Max-Planck-Institute of Quantum Optics and Professor for Experimental Physics at the Ludwig-Maximilians-Universität Munich, with the Senior BEC Award 2013.

Prof. Bloch will receive this prize for “his pioneering experimental contributions to the field of quantum many‐body physics with cold atoms in optical lattices”. Since the discovery of Bose-Einstein condensates – a very special, exotic form of matter – in 1995, BEC Conferences take place biannually at different locations.

“BEC conferences are the highlight of the meetings concerning the physics of ultracold atoms, as almost all top groups carrying out research in this field are participating,” Prof. Bloch says. The International Senior & Junior BEC awards have been established two years ago. This year’s winner of the Junior BEC Award is Prof. Markus Greiner (Harvard University), who was affiliated with the MPQ in the early years of his career. (Photo: Hector Stiftung).

The existence of a so-called Bose-Einstein condensate has been predicted by Albert Einstein and Satyendra Nath Bose about 90 years ago, describing the statistics of a gas of identical quantum particles that are characterized by their integer spin. Below an extremely low critical temperature these particles go all at once into the lowest possible quantum state, forming a “condensate” in which the waves of the individual particles merge into one single matter wave of almost macroscopic dimensions – about 100 micrometres. BECs have been brought into reality in 1995 for the first time, almost parallel by two different research groups in the USA – a discovery, for which Eric Cornell, Wolfgang Ketterle and Carl Wiemann were given the Nobel prize in Physics in 2001.

“Today, BECs serve as a starting point for the generation of new forms of matter,” Prof. Bloch explains. And for quite some years by now physicists around the world have been experimenting not only with the (comparatively) easy to handle bosons, but also with fermions – particles that are never allowed to occupy the identical quantum state what makes them harder to tame.

The special topic of Prof. Bloch is the investigation of ultracold quantum gases in crystals of light generated by laser beams, so-called optical lattices. In 2001, by choosing a special set of lattice parameters, Bloch succeeded in transforming a BEC – in which the particles can move around freely like in a suprafluid – into a state in which each atom is fixed to its lattice site, a so-called Mott insulator. Meanwhile Bloch and his group are able to produce direct images of the single atoms, as well as to address and to manipulate them. These quantum many-body systems are therefore ideally suited for modelling solid state systems, helping to understand phenomena such as superconductivity. Furthermore, the high control over the single particles opens the perspective of using them as quantum bits in a future quantum computer.

Immanuel Bloch has been awarded with several highly renowned scientific awards. Twice he has won the Philip Morris Research prize (in 2000, together with Prof. Hänsch, and in 2007). In 2002 he has received the Otto Hahn Medal of the Max Planck Society, in 2005 the Gottfried-Wilhelm-Leibniz prize of the Deutsche Forschungsgemeinschaft (DFG), the German National Merit Medal, and the International Commission of Optics Prize. In 2011 the European Physical Society (EPS) has given to him the “2011 Prize for Fundamental Aspects of Quantum Electronics and Optics”, and only this year he has been awarded with the Hector Science Prize 2012 and the Körber Award. The BEC award will be presented to him at the Bose–Einstein Conference in Sant Feliu, Spain, 7–13 September 2013. Olivia Meyer-Streng

Information on the person:
Immanuel Bloch, born in 1972, began his studies in physics at the Friedrich-Wilhelms-Universität in Bonn where he received his diploma in 1996. After having spent one year of research at Stanford University he joined the Laser Spectroscopy Division of Professor Theodor W. Hänsch (MPQ and LMU). In 2000 he obtained his doctoral degree from the LMU. He continued his research in the Hänsch group until he became appointed as Professor at the Johannes Gutenberg-Universität Mainz. Since 2008 he has been Director at the MPQ and leader of the Quantum Many-Body Systems Division, and since 2009 Chair of Quantum Optics at the Ludwig-Maximilians-Universität Munich.
Contact:
Prof. Dr. Immanuel Bloch
Chair of Experimental Physics, LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 32905 -138
Fax: +49 (0)89 32905 -760
E-mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.quantum-munich.de

More articles from Awards Funding:

nachricht Tracking down the origins of gold
08.11.2017 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>