Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Professor Immanuel Bloch receives Senior BEC Award 2013

The Scientific and Award Committees of the Bose–Einstein Conference Series honours Prof. Immanuel Bloch, Director at the Max-Planck-Institute of Quantum Optics and Professor for Experimental Physics at the Ludwig-Maximilians-Universität Munich, with the Senior BEC Award 2013.

Prof. Bloch will receive this prize for “his pioneering experimental contributions to the field of quantum many‐body physics with cold atoms in optical lattices”. Since the discovery of Bose-Einstein condensates – a very special, exotic form of matter – in 1995, BEC Conferences take place biannually at different locations.

“BEC conferences are the highlight of the meetings concerning the physics of ultracold atoms, as almost all top groups carrying out research in this field are participating,” Prof. Bloch says. The International Senior & Junior BEC awards have been established two years ago. This year’s winner of the Junior BEC Award is Prof. Markus Greiner (Harvard University), who was affiliated with the MPQ in the early years of his career. (Photo: Hector Stiftung).

The existence of a so-called Bose-Einstein condensate has been predicted by Albert Einstein and Satyendra Nath Bose about 90 years ago, describing the statistics of a gas of identical quantum particles that are characterized by their integer spin. Below an extremely low critical temperature these particles go all at once into the lowest possible quantum state, forming a “condensate” in which the waves of the individual particles merge into one single matter wave of almost macroscopic dimensions – about 100 micrometres. BECs have been brought into reality in 1995 for the first time, almost parallel by two different research groups in the USA – a discovery, for which Eric Cornell, Wolfgang Ketterle and Carl Wiemann were given the Nobel prize in Physics in 2001.

“Today, BECs serve as a starting point for the generation of new forms of matter,” Prof. Bloch explains. And for quite some years by now physicists around the world have been experimenting not only with the (comparatively) easy to handle bosons, but also with fermions – particles that are never allowed to occupy the identical quantum state what makes them harder to tame.

The special topic of Prof. Bloch is the investigation of ultracold quantum gases in crystals of light generated by laser beams, so-called optical lattices. In 2001, by choosing a special set of lattice parameters, Bloch succeeded in transforming a BEC – in which the particles can move around freely like in a suprafluid – into a state in which each atom is fixed to its lattice site, a so-called Mott insulator. Meanwhile Bloch and his group are able to produce direct images of the single atoms, as well as to address and to manipulate them. These quantum many-body systems are therefore ideally suited for modelling solid state systems, helping to understand phenomena such as superconductivity. Furthermore, the high control over the single particles opens the perspective of using them as quantum bits in a future quantum computer.

Immanuel Bloch has been awarded with several highly renowned scientific awards. Twice he has won the Philip Morris Research prize (in 2000, together with Prof. Hänsch, and in 2007). In 2002 he has received the Otto Hahn Medal of the Max Planck Society, in 2005 the Gottfried-Wilhelm-Leibniz prize of the Deutsche Forschungsgemeinschaft (DFG), the German National Merit Medal, and the International Commission of Optics Prize. In 2011 the European Physical Society (EPS) has given to him the “2011 Prize for Fundamental Aspects of Quantum Electronics and Optics”, and only this year he has been awarded with the Hector Science Prize 2012 and the Körber Award. The BEC award will be presented to him at the Bose–Einstein Conference in Sant Feliu, Spain, 7–13 September 2013. Olivia Meyer-Streng

Information on the person:
Immanuel Bloch, born in 1972, began his studies in physics at the Friedrich-Wilhelms-Universität in Bonn where he received his diploma in 1996. After having spent one year of research at Stanford University he joined the Laser Spectroscopy Division of Professor Theodor W. Hänsch (MPQ and LMU). In 2000 he obtained his doctoral degree from the LMU. He continued his research in the Hänsch group until he became appointed as Professor at the Johannes Gutenberg-Universität Mainz. Since 2008 he has been Director at the MPQ and leader of the Quantum Many-Body Systems Division, and since 2009 Chair of Quantum Optics at the Ludwig-Maximilians-Universität Munich.
Prof. Dr. Immanuel Bloch
Chair of Experimental Physics, LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max-Planck-Institute of Quantum Optics
Phone: +49 (0)89 32905 -138
Fax: +49 (0)89 32905 -760

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Awards Funding:

nachricht TIB advances implementation of transition towards Open Access in high energy physics
13.03.2018 | Technische Informationsbibliothek (TIB)

nachricht Additional 5 Million Euro Funding for Aging Research in Jena, Germany
09.03.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>