Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Ignacio Cirac wins Benjamin Franklin Medal in Physics

20.10.2009
The Franklin Institute in Philadephia has awarded the 2010 Benjamin Franklin Medal in Physics to Professor Ignacio Cirac, Director at Max Planck Institute of Quantum Optics (Garching, near Munich), Dr. David J. Wineland (National Institute of Standards and Technology in Boulder (NIST), USA) and Professor Peter Zoller (University of Innsbruck, Austria).

The scientists receive this award for "their theoretical proposal and experimental realization of the first device that performs elementary computer-logic operations using the quantum properties of individual atoms."

The Franklin awards were first bestowed in 1824. Recipients include e.g. Nobel Prize winners such as Albert Einstein and Marie Curie. The laureates will come to Philadelphia for a week of seminars and ceremony in April 2010.

Standard quantum computation is based on a system of quantum particles such as atoms or ions that serve to store and encode information. It exploits the unique property of these particles to take on not only states like '1' or '0' but also all kinds of superpositions of these states. Key elements in such a quantum computer are quantum gates that couple two qubits at a time. Every quantum computation can be decomposed in a sequence of elementary one- and two-qubit-gates.

In 1995 the theoretical physicists Cirac and Zoller were the first ones to propose a detailed concept for the realization of two-qubit-gates based on the use of ultracold trapped ions. Soon after David Wineland, leader of the Ion Storage Group at NIST, succeeded in the experimental demonstration of this proposal. Since than many research groups have contributed to improve this concept both from the theoretical and the experimental side. On the way to the realization of a universal quantum computer devices using ultracold stored ions are the most advanced up to now.

Professor Ignacio Cirac was born in the City of Manresa in 1965. He studied theoretical physics at the Universidad Complutense de Madrid where he received his PhD in 1991. He began his career in physics as a "Professor Titular" at the Universidad de Castilla-La Mancha where he stayed till 1996. In 1996 he became Professor at the department of Theoretical Physics at Leopold Franzens University Innsbruck. Since 2001 he is Director at the Max Planck Institute of Quantum Optics and head of the Theory Division.

Besides working on quantum computation the theory group of Prof. Cirac also develops theoretical tools to describe many-body quantum systems, which may lead to a better understanding of macroscopic phenomena such as superconductivity. Furthermore, Prof. Cirac and his collaborators created new theoretical tools to characterize and quantify entanglement, and participates in the creation of a new theory of information based on quantum mechanics.

Professor Ignacio Cirac has by now become one of the most renowned scientists in the field of quantum information and quantum computation. E.g., in 2005 he was awarded the "Quantum Electronics Prize" of the European Science Foundation. In May 2006 he was the youngest ever winner of the renowned Royal Spanish Prince of Asturias Prize, and in the same year he received the International Quantum Communication Award together with Professor Peter Zoller. In January 2009 he again shared the "Frontiers of Knowledge Award in Basic Sciences" of the Spanish BBVA Foundation with Professor Peter Zoller. Olivia Meyer-Streng

Publications:
J.I. Cirac and P. Zoller
Quantum Computations with Cold Trapped Ions
Physical Review Letters, Vol. 74, No. 20, p. 4091, 15 May 1995
C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland
Demonstration of a Fundamental Quantum Logic Gate
Physical Review Letters, Vol. 75, No. 25, p. 4714, 18 December 1995
Contact:
Prof. Dr. Ignacio Cirac
Professor of Physics, TU München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1,
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de;
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: 089 - 32905 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>