Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Ignacio Cirac wins Benjamin Franklin Medal in Physics

20.10.2009
The Franklin Institute in Philadephia has awarded the 2010 Benjamin Franklin Medal in Physics to Professor Ignacio Cirac, Director at Max Planck Institute of Quantum Optics (Garching, near Munich), Dr. David J. Wineland (National Institute of Standards and Technology in Boulder (NIST), USA) and Professor Peter Zoller (University of Innsbruck, Austria).

The scientists receive this award for "their theoretical proposal and experimental realization of the first device that performs elementary computer-logic operations using the quantum properties of individual atoms."

The Franklin awards were first bestowed in 1824. Recipients include e.g. Nobel Prize winners such as Albert Einstein and Marie Curie. The laureates will come to Philadelphia for a week of seminars and ceremony in April 2010.

Standard quantum computation is based on a system of quantum particles such as atoms or ions that serve to store and encode information. It exploits the unique property of these particles to take on not only states like '1' or '0' but also all kinds of superpositions of these states. Key elements in such a quantum computer are quantum gates that couple two qubits at a time. Every quantum computation can be decomposed in a sequence of elementary one- and two-qubit-gates.

In 1995 the theoretical physicists Cirac and Zoller were the first ones to propose a detailed concept for the realization of two-qubit-gates based on the use of ultracold trapped ions. Soon after David Wineland, leader of the Ion Storage Group at NIST, succeeded in the experimental demonstration of this proposal. Since than many research groups have contributed to improve this concept both from the theoretical and the experimental side. On the way to the realization of a universal quantum computer devices using ultracold stored ions are the most advanced up to now.

Professor Ignacio Cirac was born in the City of Manresa in 1965. He studied theoretical physics at the Universidad Complutense de Madrid where he received his PhD in 1991. He began his career in physics as a "Professor Titular" at the Universidad de Castilla-La Mancha where he stayed till 1996. In 1996 he became Professor at the department of Theoretical Physics at Leopold Franzens University Innsbruck. Since 2001 he is Director at the Max Planck Institute of Quantum Optics and head of the Theory Division.

Besides working on quantum computation the theory group of Prof. Cirac also develops theoretical tools to describe many-body quantum systems, which may lead to a better understanding of macroscopic phenomena such as superconductivity. Furthermore, Prof. Cirac and his collaborators created new theoretical tools to characterize and quantify entanglement, and participates in the creation of a new theory of information based on quantum mechanics.

Professor Ignacio Cirac has by now become one of the most renowned scientists in the field of quantum information and quantum computation. E.g., in 2005 he was awarded the "Quantum Electronics Prize" of the European Science Foundation. In May 2006 he was the youngest ever winner of the renowned Royal Spanish Prince of Asturias Prize, and in the same year he received the International Quantum Communication Award together with Professor Peter Zoller. In January 2009 he again shared the "Frontiers of Knowledge Award in Basic Sciences" of the Spanish BBVA Foundation with Professor Peter Zoller. Olivia Meyer-Streng

Publications:
J.I. Cirac and P. Zoller
Quantum Computations with Cold Trapped Ions
Physical Review Letters, Vol. 74, No. 20, p. 4091, 15 May 1995
C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland
Demonstration of a Fundamental Quantum Logic Gate
Physical Review Letters, Vol. 75, No. 25, p. 4714, 18 December 1995
Contact:
Prof. Dr. Ignacio Cirac
Professor of Physics, TU München
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1,
85748 Garching
Phone: +49 - 89 / 32905 705 / 736
Fax: +49 - 89 / 32905 336
E-mail: ignacio.cirac@mpq.mpg.de;
www.mpq.mpg.de/cirac
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: 089 - 32905 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Breakthrough Prize for Kim Nasmyth
04.12.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht The key to chemical transformations
29.11.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>