Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Ferenc Krausz receives Order of Merit

16.11.2011
Federal President Christian Wulff has donated the "Verdienstkreuz am Bande" of the Federal Rebublic of Germany to Professor Ferenc Krausz, Director at the Max Planck Institute of Quantum Optics in Garching and Chair of Experimental Physics at the Ludwig-Maximilians-Universität München (LMU). The renowned scientist and leader of the "Laboratory for Attosecond Physics" will receive this Order of Merit on November 17th, 2011 from the Minister President of Bavaria Horst Seehofer.

The Order of Merit was instituted in 1951 by the Federal President Theodor Heuss and is given "for achievements in the political, economic, social or intellectual realm and for all kinds of outstanding services to the nation in the field of social, charitable or philanthropic work". In particular it is awarded to Professor Krausz for his leading role in the field of attosecond physics and his pioneering work in the development of new laser technologies which will not only serve fundamental research but shall also be applied in medical diagnosis and therapy.

Professor Dr. Ferenc Krausz, born in Mór (Hungary) in 1962, studied electrical engineering at the Budapest University of Technology and theoretical physics at the Eötvös-Loránd University in Budapest. In 1991 he received his doctoral degree in Quantum Electronics at the Vienna University of Technology, where only two years later he received his habilitation. In 1999 he was appointed full professor at the Vienna University of Technology and in 2000 he became director at the centre for "Advanced Light Sources". In 2003 he was offered the position of director at the Max Planck Institute for Quantum Optics, where he leads the "Attosecond Physics" Division. In 2004, he took over a Chair of Experimental Physics at the Ludwig Maximilians Universität München.

Professor Ferenc Krausz is recognized as the founder of the field of attosecond physics. In 2002 he succeeded in generating light pulses in the attosecond domain (an attosecond is a billionth of a billionth of a second) for the first time – a progress which was celebrated by the scientific journals Nature und Science as one of the 10 most important achievements in science of this year. In 2003, he developed a laser which, using a new style of mirrors, generated light pulses consisting of only a few wave cycles with controlled waveforms for the first time. The perfectly controlled high-intensity fields of theses femtosecond pulses exert forces on electrically charged elementary particles (electrons or protons) that are comparable to intra-atomic forces.

The main topic in the field of attosecond physics is the development of new laser techniques that make it possible to observe the motion of electrons in atoms, molecules and solids with sub-atomic resolution in space and attosecond resolution in time. These measurements have already brought amazing new insights into atomic and solid state physics.

However, from the very beginning it was a deep wish of Professor Krausz to use the new technologies for medical applications. As a consequence, he initiated the Centre for Advanced Laser Applications (CALA) which is going to be constructed on the research site Garching in the next years. Here, the development of lasers generating extremely short intense light pulses is pursued. These lasers will be the basis for new and very brilliant X-ray facilities which will achieve imaging with an extremely high resolution and therefore make it possible to discover cancer tissue at a very early stage. The new laser technologies will also lead to new compact sources for particle rays – protons and carbon ions –, which have proved to be very efficient for the treatment of a certain kind of tumors.

Professor Krausz has been the recipient of numerous scientific awards and prizes, e.g. the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft in 2005. In 2006 he was presented with the Quantum Electronics Award of the IEEE Laser and Electro-Optics Society as well as with the British "Progress Medal" of the Royal Photographic Society. He is also a member of many scientific societies and academies such as the Austrian and Hungarian Academy of Sciences and the European Academy of Sciences and Arts in Salzburg (Austria). [Olivia Meyer-Streng]

Contact:
Prof. Ferenc Krausz
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0)89/32 905-600
Fax: +49 (0)89/ 32 905-649
e-mail: ferenc.krausz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0)89/ 32 905-213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht Six German-Russian Research Groups Receive Three Years of Funding
12.09.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht IVAM Marketing Prize recognizes convincing technology marketing for the tenth time
22.08.2017 | IVAM Fachverband für Mikrotechnik

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>