Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor Ferenc Krausz receives Order of Merit

16.11.2011
Federal President Christian Wulff has donated the "Verdienstkreuz am Bande" of the Federal Rebublic of Germany to Professor Ferenc Krausz, Director at the Max Planck Institute of Quantum Optics in Garching and Chair of Experimental Physics at the Ludwig-Maximilians-Universität München (LMU). The renowned scientist and leader of the "Laboratory for Attosecond Physics" will receive this Order of Merit on November 17th, 2011 from the Minister President of Bavaria Horst Seehofer.

The Order of Merit was instituted in 1951 by the Federal President Theodor Heuss and is given "for achievements in the political, economic, social or intellectual realm and for all kinds of outstanding services to the nation in the field of social, charitable or philanthropic work". In particular it is awarded to Professor Krausz for his leading role in the field of attosecond physics and his pioneering work in the development of new laser technologies which will not only serve fundamental research but shall also be applied in medical diagnosis and therapy.

Professor Dr. Ferenc Krausz, born in Mór (Hungary) in 1962, studied electrical engineering at the Budapest University of Technology and theoretical physics at the Eötvös-Loránd University in Budapest. In 1991 he received his doctoral degree in Quantum Electronics at the Vienna University of Technology, where only two years later he received his habilitation. In 1999 he was appointed full professor at the Vienna University of Technology and in 2000 he became director at the centre for "Advanced Light Sources". In 2003 he was offered the position of director at the Max Planck Institute for Quantum Optics, where he leads the "Attosecond Physics" Division. In 2004, he took over a Chair of Experimental Physics at the Ludwig Maximilians Universität München.

Professor Ferenc Krausz is recognized as the founder of the field of attosecond physics. In 2002 he succeeded in generating light pulses in the attosecond domain (an attosecond is a billionth of a billionth of a second) for the first time – a progress which was celebrated by the scientific journals Nature und Science as one of the 10 most important achievements in science of this year. In 2003, he developed a laser which, using a new style of mirrors, generated light pulses consisting of only a few wave cycles with controlled waveforms for the first time. The perfectly controlled high-intensity fields of theses femtosecond pulses exert forces on electrically charged elementary particles (electrons or protons) that are comparable to intra-atomic forces.

The main topic in the field of attosecond physics is the development of new laser techniques that make it possible to observe the motion of electrons in atoms, molecules and solids with sub-atomic resolution in space and attosecond resolution in time. These measurements have already brought amazing new insights into atomic and solid state physics.

However, from the very beginning it was a deep wish of Professor Krausz to use the new technologies for medical applications. As a consequence, he initiated the Centre for Advanced Laser Applications (CALA) which is going to be constructed on the research site Garching in the next years. Here, the development of lasers generating extremely short intense light pulses is pursued. These lasers will be the basis for new and very brilliant X-ray facilities which will achieve imaging with an extremely high resolution and therefore make it possible to discover cancer tissue at a very early stage. The new laser technologies will also lead to new compact sources for particle rays – protons and carbon ions –, which have proved to be very efficient for the treatment of a certain kind of tumors.

Professor Krausz has been the recipient of numerous scientific awards and prizes, e.g. the Gottfried Wilhelm Leibniz Prize of the Deutsche Forschungsgemeinschaft in 2005. In 2006 he was presented with the Quantum Electronics Award of the IEEE Laser and Electro-Optics Society as well as with the British "Progress Medal" of the Royal Photographic Society. He is also a member of many scientific societies and academies such as the Austrian and Hungarian Academy of Sciences and the European Academy of Sciences and Arts in Salzburg (Austria). [Olivia Meyer-Streng]

Contact:
Prof. Ferenc Krausz
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0)89/32 905-600
Fax: +49 (0)89/ 32 905-649
e-mail: ferenc.krausz@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics, Garching
Phone: +49 (0)89/ 32 905-213
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Photography: An unusual and surprising picture of science
04.05.2017 | Schweizerischer Nationalfonds SNF

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>