Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nikolaus Rajewsky of the MDC to Receive the Leibniz Prize - Highest Honor Awarded in German Research

Professor Nikolaus Rajewsky of the Max Delbrück Center for Molecular Medicine (MDC) Berlin is to receive Germany’s most prestigious research award, the Gottfried Wilhelm Leibniz Prize.

The announcement was made by the German Research Foundation (DFG) on Thursday, December 8, 2011. This is the second time the prize will go to the MDC. In 2002 Professor Carmen Birchmeier received the award. In 2012 the prize will be awarded to a total of eleven scientists: two women and nine men were selected from among 131 nominations. The Leibniz Prizes, each endowed with up to 2.5 million euros, will be presented in an award ceremony in Berlin on February 27, 2012.

Nikolaus Rajewsky is Professor of Systems Biology at the MDC and the Charité and Scientific Director of the “Berlin Institute for Medical Systems Biology” (BIMSB) at the MDC. Systems biology combines molecular biology, biochemistry, mathematics and physics in order to quantitatively capture and predict complex processes of life. Professor Rajewsky’s research activities focus mainly on microRNAs, a group of genes discovered only a few years ago. As Nikolaus Rajewsky has demonstrated experimentally and with the aid of bioinformatics, microRNAs play an important role in the regulation of genes, including those that play a crucial role in the development of diseases. This discovery opens up a huge field of potential applications, including target structures for novel therapy approaches.

In addition, Professor Rajewsky and his group have also made important methodological and technological advances. Together with his colleague Marc Friedländer, he developed a computer-based method with which microRNA molecules can be identified. In an innovative research collaboration at the MDC, Professor Nikolaus Rajewsky and Professor Matthias Selbach demonstrated how microRNAs regulate the activity of genes and thus steer the production of thousands of proteins. Another accomplishment, achieved together with developmental biologists of New York University, was to develop a method with which large numbers of nematodes (C. elegans), an important model organism in biology, can be studied during various stages of embryonic development.

Furthermore, together with researchers in the U.S. and Canada, he compiled a catalogue of microRNAs of planarian flatworms, and there also identified microRNAs which could play a role in the regeneration and function of stem cells. Freshwater planarian flatworms possess the capacity to regenerate into completely new, viable individuals from any cut-off body part. This regeneration is mediated by totipotent adult stem cells. Consequently, planarian flatworms are the object of intense research in the lab of Nikolaus Rajewsky.

Nikolaus Rajewsky studied mathematics and physics at the University of Cologne, Germany from 1988 - 1993, where he earned his PhD in theoretical physics in 1997. In the fall of 1998, he went to the USA as a post-doctoral fellow, first at Rutgers University in New Jersey, and, from 1999 - 2002, at Rockefeller University in New York, where he later became Research Assistant Professor and, in 2003, Assistant Professor at New York University. From 1991 to 1996 he also studied music (piano) at the Folkwang Academy in Essen (Germany), where he graduated with an artist diploma (künstlerische Reifeprüfung).

Professor Rajewsky has already received numerous awards for his work, among these in 2010 the Science Prize of the Governing Mayor of Berlin. Also in 2010 he was elected to be a member of the European Organization for Molecular Biology (EMBO). In 2008 he was named Global Distinguished Professor of Biology at New York University.

The Berlin Institute for Medical Systems Biology (BIMSB) was founded in 2008 by the MDC with pilot funding of the Federal Ministry of Education and Research and the Senate of Berlin on Campus Berlin-Buch. The BIMSB collaborates closely with other research institutions, in particular with Humboldt University Berlin and Charité – Universitätsmedizin Berlin and in the U.S. with New York University (NYU) and Rockefeller University. In addition, through the initiative of Professor Rajewsky, the BIMSB offers a joint PhD program with NYU and the MDC.

In 2015 the BIMSB will move into a new building on the north campus of Humboldt University. The new building, which is being financed by the Senate of Berlin with approximately 30 million euros, will provide 5 500 m² of space for around 300 employees. The annual operating costs amounting to approximately 20 million euros is shared by the Federal Ministry of Education and Research (90 percent) and by the Berlin Senate (10 percent).

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>