Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nikolaus Rajewsky of the MDC to Receive the Leibniz Prize - Highest Honor Awarded in German Research

14.12.2011
Professor Nikolaus Rajewsky of the Max Delbrück Center for Molecular Medicine (MDC) Berlin is to receive Germany’s most prestigious research award, the Gottfried Wilhelm Leibniz Prize.

The announcement was made by the German Research Foundation (DFG) on Thursday, December 8, 2011. This is the second time the prize will go to the MDC. In 2002 Professor Carmen Birchmeier received the award. In 2012 the prize will be awarded to a total of eleven scientists: two women and nine men were selected from among 131 nominations. The Leibniz Prizes, each endowed with up to 2.5 million euros, will be presented in an award ceremony in Berlin on February 27, 2012.

Nikolaus Rajewsky is Professor of Systems Biology at the MDC and the Charité and Scientific Director of the “Berlin Institute for Medical Systems Biology” (BIMSB) at the MDC. Systems biology combines molecular biology, biochemistry, mathematics and physics in order to quantitatively capture and predict complex processes of life. Professor Rajewsky’s research activities focus mainly on microRNAs, a group of genes discovered only a few years ago. As Nikolaus Rajewsky has demonstrated experimentally and with the aid of bioinformatics, microRNAs play an important role in the regulation of genes, including those that play a crucial role in the development of diseases. This discovery opens up a huge field of potential applications, including target structures for novel therapy approaches.

In addition, Professor Rajewsky and his group have also made important methodological and technological advances. Together with his colleague Marc Friedländer, he developed a computer-based method with which microRNA molecules can be identified. In an innovative research collaboration at the MDC, Professor Nikolaus Rajewsky and Professor Matthias Selbach demonstrated how microRNAs regulate the activity of genes and thus steer the production of thousands of proteins. Another accomplishment, achieved together with developmental biologists of New York University, was to develop a method with which large numbers of nematodes (C. elegans), an important model organism in biology, can be studied during various stages of embryonic development.

Furthermore, together with researchers in the U.S. and Canada, he compiled a catalogue of microRNAs of planarian flatworms, and there also identified microRNAs which could play a role in the regeneration and function of stem cells. Freshwater planarian flatworms possess the capacity to regenerate into completely new, viable individuals from any cut-off body part. This regeneration is mediated by totipotent adult stem cells. Consequently, planarian flatworms are the object of intense research in the lab of Nikolaus Rajewsky.

Nikolaus Rajewsky studied mathematics and physics at the University of Cologne, Germany from 1988 - 1993, where he earned his PhD in theoretical physics in 1997. In the fall of 1998, he went to the USA as a post-doctoral fellow, first at Rutgers University in New Jersey, and, from 1999 - 2002, at Rockefeller University in New York, where he later became Research Assistant Professor and, in 2003, Assistant Professor at New York University. From 1991 to 1996 he also studied music (piano) at the Folkwang Academy in Essen (Germany), where he graduated with an artist diploma (künstlerische Reifeprüfung).

Professor Rajewsky has already received numerous awards for his work, among these in 2010 the Science Prize of the Governing Mayor of Berlin. Also in 2010 he was elected to be a member of the European Organization for Molecular Biology (EMBO). In 2008 he was named Global Distinguished Professor of Biology at New York University.

The Berlin Institute for Medical Systems Biology (BIMSB) was founded in 2008 by the MDC with pilot funding of the Federal Ministry of Education and Research and the Senate of Berlin on Campus Berlin-Buch. The BIMSB collaborates closely with other research institutions, in particular with Humboldt University Berlin and Charité – Universitätsmedizin Berlin and in the U.S. with New York University (NYU) and Rockefeller University. In addition, through the initiative of Professor Rajewsky, the BIMSB offers a joint PhD program with NYU and the MDC.

In 2015 the BIMSB will move into a new building on the north campus of Humboldt University. The new building, which is being financed by the Senate of Berlin with approximately 30 million euros, will provide 5 500 m² of space for around 300 employees. The annual operating costs amounting to approximately 20 million euros is shared by the Federal Ministry of Education and Research (90 percent) and by the Berlin Senate (10 percent).

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.dfg.de/en/index.jsp
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>