Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DFG Research Group: “What Does a Neutrino Weigh?”

14.04.2015

German Research Foundation provides approximately two million euros in funding

A new research group, established at Heidelberg University with funding from the German Research Foundation (DFG), is working on determining the mass of the elementary particle neutrino.

The research, which began in April 2015, will receive funds of nearly two million euros over a three-year period. Beside physicists of Ruperto Carola researchers from the Max Planck Institute for Nuclear Physics in Heidelberg and the Universities of Mainz and Tübingen are part of the project.

Prof. Dr. Christian Enss of the Kirchhoff Institute for Physics at Heidelberg University is the spokesperson for the “Neutrino Mass Determination by Electron Capture in Holmium-163“ (ECHo) DFG research group.

“For a long time the neutral elementary particle neutrino was thought to be massless, which turned out to be wrong. Since then, particle physicists all over the world have been pursuing the fundamental task of determining the neutrino’s tiny mass,” says Prof. Enss.

To get closer to answering the question of the neutrino’s weight, the new DFG research group intends to develop and deploy a special detector technology known as the magnetic microcalorimeter.

These detectors will be used in experiments to measure the decay spectrum of the radioactive element holmium-163 with extreme precision. As Prof. Enss explains, holmium-163 decays into dysprosium-163 when an electron from the holmium shell is “captured” by the nucleus. A neutrino is released at the same time.

The missing energy at the end point of the decay spectrum should point to the mass of the neutrino. “We want to develop this approach over the long term to make it the most sensitive method of directly determining the mass of neutrinos,” says the Heidelberg physicist.

The researchers are also hoping to gain some new basic knowledge of elementary particles in general. “This new detector technology also holds a great deal of potential for further experiments in particle physics and related fields,” underscores Prof. Enss. Approximately 1.4 million euros of the total DFG funding is earmarked for Heidelberg arm of the ECHo DFG research group.

Contact:
Prof. Dr. Christian Enss
Kirchhoff Institute for Physics
Phone: +49 6221 54-9861
christian.enss@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/~enss/?lang=en

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>