Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DFG Research Group: “What Does a Neutrino Weigh?”

14.04.2015

German Research Foundation provides approximately two million euros in funding

A new research group, established at Heidelberg University with funding from the German Research Foundation (DFG), is working on determining the mass of the elementary particle neutrino.

The research, which began in April 2015, will receive funds of nearly two million euros over a three-year period. Beside physicists of Ruperto Carola researchers from the Max Planck Institute for Nuclear Physics in Heidelberg and the Universities of Mainz and Tübingen are part of the project.

Prof. Dr. Christian Enss of the Kirchhoff Institute for Physics at Heidelberg University is the spokesperson for the “Neutrino Mass Determination by Electron Capture in Holmium-163“ (ECHo) DFG research group.

“For a long time the neutral elementary particle neutrino was thought to be massless, which turned out to be wrong. Since then, particle physicists all over the world have been pursuing the fundamental task of determining the neutrino’s tiny mass,” says Prof. Enss.

To get closer to answering the question of the neutrino’s weight, the new DFG research group intends to develop and deploy a special detector technology known as the magnetic microcalorimeter.

These detectors will be used in experiments to measure the decay spectrum of the radioactive element holmium-163 with extreme precision. As Prof. Enss explains, holmium-163 decays into dysprosium-163 when an electron from the holmium shell is “captured” by the nucleus. A neutrino is released at the same time.

The missing energy at the end point of the decay spectrum should point to the mass of the neutrino. “We want to develop this approach over the long term to make it the most sensitive method of directly determining the mass of neutrinos,” says the Heidelberg physicist.

The researchers are also hoping to gain some new basic knowledge of elementary particles in general. “This new detector technology also holds a great deal of potential for further experiments in particle physics and related fields,” underscores Prof. Enss. Approximately 1.4 million euros of the total DFG funding is earmarked for Heidelberg arm of the ECHo DFG research group.

Contact:
Prof. Dr. Christian Enss
Kirchhoff Institute for Physics
Phone: +49 6221 54-9861
christian.enss@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/~enss/?lang=en

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Tracking down pest control strategies
31.01.2018 | Technische Universität Dresden

nachricht Polymers and Fuels from Renewable Resources
29.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>