Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New DFG Research Group: “What Does a Neutrino Weigh?”

14.04.2015

German Research Foundation provides approximately two million euros in funding

A new research group, established at Heidelberg University with funding from the German Research Foundation (DFG), is working on determining the mass of the elementary particle neutrino.

The research, which began in April 2015, will receive funds of nearly two million euros over a three-year period. Beside physicists of Ruperto Carola researchers from the Max Planck Institute for Nuclear Physics in Heidelberg and the Universities of Mainz and Tübingen are part of the project.

Prof. Dr. Christian Enss of the Kirchhoff Institute for Physics at Heidelberg University is the spokesperson for the “Neutrino Mass Determination by Electron Capture in Holmium-163“ (ECHo) DFG research group.

“For a long time the neutral elementary particle neutrino was thought to be massless, which turned out to be wrong. Since then, particle physicists all over the world have been pursuing the fundamental task of determining the neutrino’s tiny mass,” says Prof. Enss.

To get closer to answering the question of the neutrino’s weight, the new DFG research group intends to develop and deploy a special detector technology known as the magnetic microcalorimeter.

These detectors will be used in experiments to measure the decay spectrum of the radioactive element holmium-163 with extreme precision. As Prof. Enss explains, holmium-163 decays into dysprosium-163 when an electron from the holmium shell is “captured” by the nucleus. A neutrino is released at the same time.

The missing energy at the end point of the decay spectrum should point to the mass of the neutrino. “We want to develop this approach over the long term to make it the most sensitive method of directly determining the mass of neutrinos,” says the Heidelberg physicist.

The researchers are also hoping to gain some new basic knowledge of elementary particles in general. “This new detector technology also holds a great deal of potential for further experiments in particle physics and related fields,” underscores Prof. Enss. Approximately 1.4 million euros of the total DFG funding is earmarked for Heidelberg arm of the ECHo DFG research group.

Contact:
Prof. Dr. Christian Enss
Kirchhoff Institute for Physics
Phone: +49 6221 54-9861
christian.enss@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.kip.uni-heidelberg.de/~enss/?lang=en

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>