Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motion recognition method successful for 10 years

08.09.2014

– prestigious award for Fraunhofer MEVIS scientist

Nils Papenberg, research scientist at Fraunhofer Institute for Medical Image Computing MEVIS, is receiving one of the most prestigious awards in the field of machine vision. The 36-year-old is accepting the Koenderink award with three colleagues in Zurich on September 8th.

It is being given at the European Conference on Computer Vision (ECCV), one of the most important conferences in the field. The prize is given every two years and honors publications issued in the last decade that have proven to be of outstanding value for research and industry.

At the University of Saarbrücken with his colleagues Thomas Brox, Andrés Bruhn, and Joachim Weickert, Papenberg developed a mathematical method that made the recognition of movements in movies and picture sequences more precise than ever before.

The method has been revisited by numerous researchers and companies and can be found in applications including contemporary special effects computer programs for the movie industry. Medicine also benefits from this method: the motion recognition helps to fuse medical image data from different devices. Moreover, the award-winning method is being applied and further developed in research projects at Fraunhofer MEVIS.

In 2004, the team presented their new method at the ECCV congress. The question was: how can we make a computer recognize movement on a picture sequence or a movie as accurately as possible? The researchers used street traffic scenes as test sequences: cars stopping at a traffic light and then taking off again – one faster, one slower – some taking turns in another direction.

Older methods observed the cars based on only one parameter – the brightness of the objects in the image, the so-called gray value Papenberg and his colleagues included another parameter: in addition to the gray value their method also considered certain edges of the cars and followed their movement over several consecutive images.

With the help of the additional classification, the algorithm could now recognize the movement with twice as much accuracy as older methods – this applied particularly to the direction of motion of the cars. Professionals were impressed: experts had considered the achievement of such accuracy to be impossible. In addition, scientists were able to describe and confirm a theory about an existing procedure for movement recognition.
Papenberg and his colleagues proved with mathematical accuracy why this approach, called warping, is functional and useful.

In the last decade, their work has been cited nearly 1200 times in the articles of other scientists – a figure that shows the importance of the method for researchers. Meanwhile, it has been further developed by different research groups and implemented in a wide range of applications. In special effects software, the algorithm helps make scenes appear sped-up or in slow motion.

Nils Papenberg transferred in 2004 from Saarbrücken to the University of Lübeck and in 2009 to the Fraunhofer MEVIS Project Group Image Registration. A team of specialists in the fields of mathematics and computer science explores methods for fusing medical images and develops award-winning methods for use in medicine.

The method has been included in software that merges images from two diagnostic procedures (CT and PET). It supports fusing CT and MR images for the implantation of brain pacemakers. As a result, the surgeon is able to recognize and differentiate between bones, pacemaker, and even brain tissue on a monitor. If breast cancer is suspected, tissue samples can be taken in a gentler way by guiding the biopsy needle via ultrasound.

The method helps generate precise localization. The algorithm is also of interest for tumor treatment with particle beams or X-ray: if the tumor is in or on a moving organ, the rays can follow the movements of the organ so that they can reach the cancer as precisely as possible and spare the surrounding healthy tissue.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/motion-recognition-...

Bianka Hofmann | Fraunhofer-Institut

Further reports about: CT Motion accuracy images mathematical method movement movements sequences

More articles from Awards Funding:

nachricht Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Inspired by nature - scalable chemical factory due to photomicroreactors
11.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>