Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motion recognition method successful for 10 years

08.09.2014

– prestigious award for Fraunhofer MEVIS scientist

Nils Papenberg, research scientist at Fraunhofer Institute for Medical Image Computing MEVIS, is receiving one of the most prestigious awards in the field of machine vision. The 36-year-old is accepting the Koenderink award with three colleagues in Zurich on September 8th.

It is being given at the European Conference on Computer Vision (ECCV), one of the most important conferences in the field. The prize is given every two years and honors publications issued in the last decade that have proven to be of outstanding value for research and industry.

At the University of Saarbrücken with his colleagues Thomas Brox, Andrés Bruhn, and Joachim Weickert, Papenberg developed a mathematical method that made the recognition of movements in movies and picture sequences more precise than ever before.

The method has been revisited by numerous researchers and companies and can be found in applications including contemporary special effects computer programs for the movie industry. Medicine also benefits from this method: the motion recognition helps to fuse medical image data from different devices. Moreover, the award-winning method is being applied and further developed in research projects at Fraunhofer MEVIS.

In 2004, the team presented their new method at the ECCV congress. The question was: how can we make a computer recognize movement on a picture sequence or a movie as accurately as possible? The researchers used street traffic scenes as test sequences: cars stopping at a traffic light and then taking off again – one faster, one slower – some taking turns in another direction.

Older methods observed the cars based on only one parameter – the brightness of the objects in the image, the so-called gray value Papenberg and his colleagues included another parameter: in addition to the gray value their method also considered certain edges of the cars and followed their movement over several consecutive images.

With the help of the additional classification, the algorithm could now recognize the movement with twice as much accuracy as older methods – this applied particularly to the direction of motion of the cars. Professionals were impressed: experts had considered the achievement of such accuracy to be impossible. In addition, scientists were able to describe and confirm a theory about an existing procedure for movement recognition.
Papenberg and his colleagues proved with mathematical accuracy why this approach, called warping, is functional and useful.

In the last decade, their work has been cited nearly 1200 times in the articles of other scientists – a figure that shows the importance of the method for researchers. Meanwhile, it has been further developed by different research groups and implemented in a wide range of applications. In special effects software, the algorithm helps make scenes appear sped-up or in slow motion.

Nils Papenberg transferred in 2004 from Saarbrücken to the University of Lübeck and in 2009 to the Fraunhofer MEVIS Project Group Image Registration. A team of specialists in the fields of mathematics and computer science explores methods for fusing medical images and develops award-winning methods for use in medicine.

The method has been included in software that merges images from two diagnostic procedures (CT and PET). It supports fusing CT and MR images for the implantation of brain pacemakers. As a result, the surgeon is able to recognize and differentiate between bones, pacemaker, and even brain tissue on a monitor. If breast cancer is suspected, tissue samples can be taken in a gentler way by guiding the biopsy needle via ultrasound.

The method helps generate precise localization. The algorithm is also of interest for tumor treatment with particle beams or X-ray: if the tumor is in or on a moving organ, the rays can follow the movements of the organ so that they can reach the cancer as precisely as possible and spare the surrounding healthy tissue.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/motion-recognition-...

Bianka Hofmann | Fraunhofer-Institut

Further reports about: CT Motion accuracy images mathematical method movement movements sequences

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>