Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Motion recognition method successful for 10 years

08.09.2014

– prestigious award for Fraunhofer MEVIS scientist

Nils Papenberg, research scientist at Fraunhofer Institute for Medical Image Computing MEVIS, is receiving one of the most prestigious awards in the field of machine vision. The 36-year-old is accepting the Koenderink award with three colleagues in Zurich on September 8th.

It is being given at the European Conference on Computer Vision (ECCV), one of the most important conferences in the field. The prize is given every two years and honors publications issued in the last decade that have proven to be of outstanding value for research and industry.

At the University of Saarbrücken with his colleagues Thomas Brox, Andrés Bruhn, and Joachim Weickert, Papenberg developed a mathematical method that made the recognition of movements in movies and picture sequences more precise than ever before.

The method has been revisited by numerous researchers and companies and can be found in applications including contemporary special effects computer programs for the movie industry. Medicine also benefits from this method: the motion recognition helps to fuse medical image data from different devices. Moreover, the award-winning method is being applied and further developed in research projects at Fraunhofer MEVIS.

In 2004, the team presented their new method at the ECCV congress. The question was: how can we make a computer recognize movement on a picture sequence or a movie as accurately as possible? The researchers used street traffic scenes as test sequences: cars stopping at a traffic light and then taking off again – one faster, one slower – some taking turns in another direction.

Older methods observed the cars based on only one parameter – the brightness of the objects in the image, the so-called gray value Papenberg and his colleagues included another parameter: in addition to the gray value their method also considered certain edges of the cars and followed their movement over several consecutive images.

With the help of the additional classification, the algorithm could now recognize the movement with twice as much accuracy as older methods – this applied particularly to the direction of motion of the cars. Professionals were impressed: experts had considered the achievement of such accuracy to be impossible. In addition, scientists were able to describe and confirm a theory about an existing procedure for movement recognition.
Papenberg and his colleagues proved with mathematical accuracy why this approach, called warping, is functional and useful.

In the last decade, their work has been cited nearly 1200 times in the articles of other scientists – a figure that shows the importance of the method for researchers. Meanwhile, it has been further developed by different research groups and implemented in a wide range of applications. In special effects software, the algorithm helps make scenes appear sped-up or in slow motion.

Nils Papenberg transferred in 2004 from Saarbrücken to the University of Lübeck and in 2009 to the Fraunhofer MEVIS Project Group Image Registration. A team of specialists in the fields of mathematics and computer science explores methods for fusing medical images and develops award-winning methods for use in medicine.

The method has been included in software that merges images from two diagnostic procedures (CT and PET). It supports fusing CT and MR images for the implantation of brain pacemakers. As a result, the surgeon is able to recognize and differentiate between bones, pacemaker, and even brain tissue on a monitor. If breast cancer is suspected, tissue samples can be taken in a gentler way by guiding the biopsy needle via ultrasound.

The method helps generate precise localization. The algorithm is also of interest for tumor treatment with particle beams or X-ray: if the tumor is in or on a moving organ, the rays can follow the movements of the organ so that they can reach the cancer as precisely as possible and spare the surrounding healthy tissue.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/motion-recognition-...

Bianka Hofmann | Fraunhofer-Institut

Further reports about: CT Motion accuracy images mathematical method movement movements sequences

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>