Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Million funding for Polymer Research

30.09.2013
Two ERC Advanced Grants for directors of the Max Planck Institute for Polymer Research

The European Research Council (ERC), an institution established by the EU Commission, announced on 26th September 2013 in Brussels that Professor Hans-Jürgen Butt and Professor Kurt Kremer, two directors at the Max Planck Institute for Polymer Research (MPI-P) in Mainz, will each be awarded an ERC Advanced Grant.

They will be granted research funds amounting to respectively some €2.5 million and some €2 million for the next five years. The ERC Advanced Grant aims, in contrast to other funding schemes of the Research Council, to support exceptional established research leaders to pursue new ambitious scientific projects - which had been given little or no attention so far - involving ground-breaking research topics.

Both Hans-Jürgen Butt and Kurt Kremer enjoy an excellent reputation in their areas of expertise among the scientific community.

Physics at Interfaces is director Hans-Jürgen Butt’s focal research theme. He has been leader of the same-named 65-headed work group at the MPI-P since 2002. In 2011 Butt and his team for the first time succeeded in obtaining superamphiphobic surfaces on which all liquids – even heavily wetting ones like oil and blood – roll off without leaving traces. Accountable for this is their nanostructure, which resembles that of candle soot, and consists of the smallest beads visible only under an electron microscope. The physicists in Butt’s team are working towards expanding this principle to new applications. Work has already been done successfully on membranes whose surface structure is optimal for filters separating gases like CO2 from liquids. Efficient gas exchange through such membranes enables high concentration of oxygen in blood. Life-saving heart-lung machines could thereby work more efficiently. "The ERC grant allows us to tackle several fundamental physical problems which currently limit applications" says Hans-Jürgen Butt. "We physicists may know the detailed structure of nuclear particles but we are still far away from understanding how a simple liquid wets a nanostructured surface".

As a director at the MPI-P since 1995, Professor Kurt Kremer devotes himself to the theoretical and, in particular, computer-aided research of soft condensed matter physics, i.e. a form of organic materials that often cannot be clearly defined as solid or liquid. The research interests of the "Polymer Theory" group range from polymer networks over gels and biopolymers to organic electronics. With computer-based simulations and modelling calculations the members of Kremer’s group are able to predict materials’ behaviour and their properties. The big challenge consists in accurately predicting dynamic processes in a non-equilibrium state, for instance crystallization processes. In turn, these results enable specific prediction of the properties of new materials and proposal of manufacturing processes. The ERC is now supporting Kurt Kremer's long-term objective: The development of an integrated simulation tool. This instrument should enable statements to be made on a large scale from chemical building blocks to the behaviour of whole macromolecular systems in non-equilibrium states. Such a method would be a fundamental device for the material design of the future.

This funding decision announced by the European Research Council not only stresses the potential but also shows recognition of the fundamental research conducted at the MPI-P.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks internationally among the leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both synthesis and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. The beginning of 2013 saw a total of 551 people working at the MPI-P. The work force was constituted of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists and 195 technical, administrative and auxiliary staff.

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>