Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Million funding for Polymer Research

30.09.2013
Two ERC Advanced Grants for directors of the Max Planck Institute for Polymer Research

The European Research Council (ERC), an institution established by the EU Commission, announced on 26th September 2013 in Brussels that Professor Hans-Jürgen Butt and Professor Kurt Kremer, two directors at the Max Planck Institute for Polymer Research (MPI-P) in Mainz, will each be awarded an ERC Advanced Grant.

They will be granted research funds amounting to respectively some €2.5 million and some €2 million for the next five years. The ERC Advanced Grant aims, in contrast to other funding schemes of the Research Council, to support exceptional established research leaders to pursue new ambitious scientific projects - which had been given little or no attention so far - involving ground-breaking research topics.

Both Hans-Jürgen Butt and Kurt Kremer enjoy an excellent reputation in their areas of expertise among the scientific community.

Physics at Interfaces is director Hans-Jürgen Butt’s focal research theme. He has been leader of the same-named 65-headed work group at the MPI-P since 2002. In 2011 Butt and his team for the first time succeeded in obtaining superamphiphobic surfaces on which all liquids – even heavily wetting ones like oil and blood – roll off without leaving traces. Accountable for this is their nanostructure, which resembles that of candle soot, and consists of the smallest beads visible only under an electron microscope. The physicists in Butt’s team are working towards expanding this principle to new applications. Work has already been done successfully on membranes whose surface structure is optimal for filters separating gases like CO2 from liquids. Efficient gas exchange through such membranes enables high concentration of oxygen in blood. Life-saving heart-lung machines could thereby work more efficiently. "The ERC grant allows us to tackle several fundamental physical problems which currently limit applications" says Hans-Jürgen Butt. "We physicists may know the detailed structure of nuclear particles but we are still far away from understanding how a simple liquid wets a nanostructured surface".

As a director at the MPI-P since 1995, Professor Kurt Kremer devotes himself to the theoretical and, in particular, computer-aided research of soft condensed matter physics, i.e. a form of organic materials that often cannot be clearly defined as solid or liquid. The research interests of the "Polymer Theory" group range from polymer networks over gels and biopolymers to organic electronics. With computer-based simulations and modelling calculations the members of Kremer’s group are able to predict materials’ behaviour and their properties. The big challenge consists in accurately predicting dynamic processes in a non-equilibrium state, for instance crystallization processes. In turn, these results enable specific prediction of the properties of new materials and proposal of manufacturing processes. The ERC is now supporting Kurt Kremer's long-term objective: The development of an integrated simulation tool. This instrument should enable statements to be made on a large scale from chemical building blocks to the behaviour of whole macromolecular systems in non-equilibrium states. Such a method would be a fundamental device for the material design of the future.

This funding decision announced by the European Research Council not only stresses the potential but also shows recognition of the fundamental research conducted at the MPI-P.

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks internationally among the leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both synthesis and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. The beginning of 2013 saw a total of 551 people working at the MPI-P. The work force was constituted of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists and 195 technical, administrative and auxiliary staff.

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>