Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two million Euros for Munich dementia researcher

21.01.2014
Professor Dieter Edbauer (37) from the Munich site of the German Center for Neurodegenerative Diseases (DZNE) has been awarded a “Consolidator Grant” worth approximately two million Euro by the European Research Council (ERC).

This award goes to young researchers whose projects are breaking new scientific ground. Edbauer will be using this financial support to investigate brain diseases currently deemed incurable and develop measures to treat them. The diseases targeted are the most common hereditary form of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

The causes and symptoms of these diseases overlap. They may manifest with dementia, personality changes and also with impaired speech and movement. Patients often die within just a few years.

The molecular biologist is focusing on extremely unusual proteins, which form clumps in the brains of patients. It is just a few months since Edbauer and his colleagues deciphered the composition and formation of these proteins.

“The studied proteins consist of a chain of identical elements. We call them dipeptide-repeat proteins, DPRs for short. They normally do not occur in the body, which means they are very unusual,” explains Edbauer, who leads a research group at the DZNE’s Munich site.

Translation errors in the brain

The researchers were able to trace these proteins back to a genetic peculiarity. “The DNA of these patients contains a particular section, which repeats itself hundreds or even thousands of times. In healthy people, this sequence occurs less than 30 times. The formation of a protein product is highly unexpected, because these repetitive sequences are located in an area of the genome which normally is not translated into proteins,” says the molecular biologist.

The function of these proteins has not yet been determined. “We know very little about their effects and properties. Our project is breaking new scientific ground,” says Edbauer. “It seems that the DPRs are of no use whatsoever to the organism and that they damage nerve cells. We want to investigate this in depth. We also want to find out how these proteins are formed, because it is absolutely unclear why this particular area of the genome is translated at all.”

Targeted treatment

Besides investigating tissue samples from patients, Edbauer’s team will also examine cell cultures and genetically modified mice to find new targets for treatments. “We want to test substances which prevent the creation of these proteins or slow down the aggregation process,” is how he describes the research plan.

Currently available treatments for ALS and FTD can at best alleviate the symptoms. At present, there would be no way of stopping the progression of these diseases, explains Edbauer: “The DPRs could be ideal targets for a specific treatment, because they do not occur in healthy people. If we devise a treatment, which specifically tackles these proteins, we should be able to avoid the disruption of vital metabolic processes. This minimises the risk of side-effects.”

The Munich-based researcher sees the grant of the ERC as a great opportunity: “I hope we can take a major step towards developing a causative treatment against these catastrophic diseases.”

Second grant for the DZNE

The ERC awards “Consolidator Grants” to young researchers working at the cutting edge of science. The funds are awarded after a highly competitive selection procedure and are spread over a period of five years. Dieter Edbauer is the second DZNE scientist to receive an award from the ERC: Prof. Thomas Wolbers from the DZNE site in Magdeburg was previously awarded a “Starting Grant”.

Dieter Edbauer (b. 1976) studied medicine in Munich and obtained his doctorate for studies at the Gene Center of the University of Munich (LMU) in 2001. From 2001 to 2004, he worked at the LMU’s Adolf Butenandt Institute. This was followed by five years of research at the renowned Massachusetts Institute of Technology in the USA. Since 2009, he leads a Helmholtz Young Investigators Group at the Munich site of the German Center of Neurodegenerative Diseases (DZNE).

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>