Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researcher Zsuzsanna Izsvák Receives European Research Council Grant Worth EUR 1.94 Million

16.02.2012
Dr. Zsuzsanna Izsvák, research group leader at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, has been named recipient of a European Research Council (ERC Advanced) grant worth EUR 1.94 million for her research on “jumping genes” (transposons).

With the aid of the ERC grant, in the next five years she will focus on investigating how mobile DNA elements (transposons) influence the pathogenesis of cancer and other diseases in the human genome. Altogether, nine MDC researchers, including Dr. Izsvák, have received grants of more than one million euros from the ERC.

About half of the human genome consists of transposon-derived sequences. Active transposons can jump to various sites of the DNA, insert themselves into the genome of the host and continue to spread in this way. Due to this characteristic, transposons are also called “jumping genes”.

As a consequence of mutations, in the course of time most of these “jumping genes” in the human genome have lost their mobility; only a few are still active. These remnants of transposons were long considered to be without any function. However, latest studies have shown that transposons are by no means “junk DNA”, but rather can influence the regulation of genes.

“The human genome is much more complex than previously assumed. In many processes in the body and also in disease, transposons may be the decisive factor,” Dr. Izsvák said. “That is why we need to take a closer look at transposons and their influence.”

With the ERC grant, Dr. Izsvák wants to explore the influence of transposons under stress conditions that are triggered by environmental influences, such as toxins or heavy metals, and to understand the association between transposon-derived regulatory sequences and human diseases. Furthermore, together with her team, Dr. Izsvák wants to advance the use of artificially produced transposons for gene therapy.

Dr. Izsvák has worked for over twenty years in transposon research. After several years of research at the University of Minnesota in Minneapolis/USA and at the Netherlands Cancer Institute in Amsterdam, the Hungarian researcher joined the MDC in Berlin-Buch in 1999. She has headed the research group “Mobile DNA” since 2004. At an award ceremony in Stockholm that same year she received the European Young Investigator Award (EURYI), endowed with approximately one million euros, for her research on mobile genetic elements.

With Dr. Izsvák, altogether nine researchers in Berlin-Buch have been awarded one of the highly endowed ERC grants: Professor Gary Lewin, Professor Thomas Jentsch (Leibniz-Institut für Molekulare Pharmakologie, FMP/MDC), Professor Michael Gotthardt and Dr. Jan-Erik Siemens (all 2011), Dr. James Poulet, Dr. Matthew N. Poy and Professor Klaus Rajewsky (all 2010) and Dr. Francesca Spagnoli (2009).

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>