Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researcher Zsuzsanna Izsvák Receives European Research Council Grant Worth EUR 1.94 Million

16.02.2012
Dr. Zsuzsanna Izsvák, research group leader at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, has been named recipient of a European Research Council (ERC Advanced) grant worth EUR 1.94 million for her research on “jumping genes” (transposons).

With the aid of the ERC grant, in the next five years she will focus on investigating how mobile DNA elements (transposons) influence the pathogenesis of cancer and other diseases in the human genome. Altogether, nine MDC researchers, including Dr. Izsvák, have received grants of more than one million euros from the ERC.

About half of the human genome consists of transposon-derived sequences. Active transposons can jump to various sites of the DNA, insert themselves into the genome of the host and continue to spread in this way. Due to this characteristic, transposons are also called “jumping genes”.

As a consequence of mutations, in the course of time most of these “jumping genes” in the human genome have lost their mobility; only a few are still active. These remnants of transposons were long considered to be without any function. However, latest studies have shown that transposons are by no means “junk DNA”, but rather can influence the regulation of genes.

“The human genome is much more complex than previously assumed. In many processes in the body and also in disease, transposons may be the decisive factor,” Dr. Izsvák said. “That is why we need to take a closer look at transposons and their influence.”

With the ERC grant, Dr. Izsvák wants to explore the influence of transposons under stress conditions that are triggered by environmental influences, such as toxins or heavy metals, and to understand the association between transposon-derived regulatory sequences and human diseases. Furthermore, together with her team, Dr. Izsvák wants to advance the use of artificially produced transposons for gene therapy.

Dr. Izsvák has worked for over twenty years in transposon research. After several years of research at the University of Minnesota in Minneapolis/USA and at the Netherlands Cancer Institute in Amsterdam, the Hungarian researcher joined the MDC in Berlin-Buch in 1999. She has headed the research group “Mobile DNA” since 2004. At an award ceremony in Stockholm that same year she received the European Young Investigator Award (EURYI), endowed with approximately one million euros, for her research on mobile genetic elements.

With Dr. Izsvák, altogether nine researchers in Berlin-Buch have been awarded one of the highly endowed ERC grants: Professor Gary Lewin, Professor Thomas Jentsch (Leibniz-Institut für Molekulare Pharmakologie, FMP/MDC), Professor Michael Gotthardt and Dr. Jan-Erik Siemens (all 2011), Dr. James Poulet, Dr. Matthew N. Poy and Professor Klaus Rajewsky (all 2010) and Dr. Francesca Spagnoli (2009).

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>