Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Max Planck Society awards Dr. Christof Weitenberg the Otto Hahn Medal

13.06.2012
Dr. Christof Weitenberg, a former PhD student in the group of Professor Immanuel Bloch at the Max Planck Institute of Quantum Optics in Garching near Munich, has been awarded the Otto Hahn Medal 2011 of the Max Planck Society (MPG).
Since 1978 the MPG honours about 40 young scientists each year for their outstanding scientific achievements. The award is meant to encourage highly talented people to pursue a career in fundamental research. Dr. Weitenberg receives the medal, which comes with a monetary recognition, for “his work on the realization of a quantum gas microscope and on the addressing of single atoms in ultracold quantum gases”.

Christof Weitenberg was born in Rhede in 1981 (NRW, Germany). In 2001 he began his studies of physics at the Universität des Saarlandes in Saarbrücken, at the same time registering in musical composition at the Hochschule für Musik Saar, where he got his diploma in 2005. As a scholar of the “Studienstiftung des deutschen Volkes” he completed his physics studies in 2007 with a diploma. He started his doctoral thesis in the group of Professor Immanuel Bloch, who at that time had a chair in physics at the Johannes Gutenberg-Universität Mainz.

After Professor Bloch had been appointed director at the MPQ in 2008, he continued his doctoral work on “Single-atom-resolved imaging and single-spin addressing in an atomic Mott insulator” at the institute in Garching. In 2011 Christof Weitenberg received his doctoral degree from the Ludwig-Maximilians-Universität with “summa cum laude”. Subsequently, he became a fellow of the Alexander von Humboldt-Foundation and moved to the Laboratoire Kastler Brossel, Ecole Normale Supérieure (ENS) in Paris to the group of Jean Dalibard. This year he obtained a Marie Curie-Fellowship of the European Union.

The central subject of his thesis was the detection and the manipulation of single atoms of an ultracold atomic quantum gas. The cold atoms are sitting in an artificial crystal of light, which is created by the superposition of several laser beams. They serve as a well-controlled model system for electrons in a solid-state material. Just like the electrons, the atoms can e.g. either freely move through the lattice or be pinned to their lattice site due to their mutual interaction. The latter case is called a Mott insulator.

Within his thesis work in the team of Professor Immanuel Bloch and Professor Stefan Kuhr (now at University of Strathclyde, Glasgow) Christof Weitenberg developed techniques that for the first time allowed imaging single atoms in this Mott insulator. In this way, the researchers could directly observe the distribution of the atoms on the lattice sites, which characterizes the respective state of the quantum gas. Furthermore, it was possible to address and manipulate single atoms with the help of a strongly focused laser beam – a vital step towards a quantum computer built of cold atoms.

At the ENS, Weitenberg now studies the behaviour of the cold quantum gases in the presence of an artificial magnetic field.

Dr. Weitenberg will receive the Otto Hahn Medal on the occasion of the General Meeting of the Max Planck Society in Düsseldorf on June 13, 2012. [Olivia Meyer-Streng]

Contact:
Dr. Christof Weitenberg
Laboratoire Kastler Brossel
Ecole Normale Supérieure
24, rue Lomond
75005 Paris, France
Phone: +33 (0)1 / 44 32 33 07
E-mail: christof.weitenberg@lkb.ens.fr

Dr. Olivia Meyer-Streng
Press and Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de

More articles from Awards Funding:

nachricht CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht BMBF funds translational project to improve radiotherapy
10.05.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>