Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manuel Endres receives Otto Hahn Medal from the Max Planck Society

04.06.2014

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013.

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013. Since 1978 the Max Planck Society presents this honour annually to junior scientists for groundbreaking scientific achievements connected to their doctoral thesis.


Manuel Endres (Photo: MPQ)

The award is intended to encourage highly talented people to decide for a career in fundamental research. Dr Endres receives the medal, endowed with prize money, for his new technique in detecting single atoms in optical lattices, developed in the Quantum Many-Body Systems Division of Prof. Immanuel Bloch at the Max Planck Institute of Quantum Optics.

Having finished his thesis in March 2013 Manuel Endres started to treat these topics from a more theoretical point of view, working in the Theory Division of Prof. Ignacio Cirac.

Manuel Endres (Photo: MPQ), born in Würzburg (Germany), began his education with the study of Computer Science at the University of Applied Sciences Würzburg. After his pre-diploma, he went to the Philipps-Universität Marburg to study physics. There, he received his physics diploma in 2008. His diploma thesis was supervised by Prof. Immanuel Bloch (at that time Chair of Experimental Physics at the Johannes-Gutenberg-Universität Mainz).

In 2008, Manuel Endres started to work on his doctoral thesis in the Quantum Many-Body Systems Division of Prof. Bloch at MPQ, completing in March 2013 with summa cum laude. With the support of Prof. Stefan Kuhr (now at the University of Strathclyde, Scotland) he was able to develop a novel technique for the detection of single atoms in optical lattices.

In the past years, ultracold quantum gases have proven to be excellent models of strongly interacting many-body systems, from extended stellar systems to high-tech materials. The new method aims at understanding such complex systems at the level of individual particles.

A high-resolution objective collects the fluorescence light and yields in-situ snapshots of the quantum gas, which allows for a single-site-resolved reconstruction of the atomic distribution. A series of such snap shots provides information on the particle correlations. For the first time, even non-local correlations between atoms on different lattice sites can be experimentally detected. In addition, the highly sensitive technique could be used to detect, for the first time, an ‘Higgs’ amplitude mode close to a low-dimensional quantum phase transition.

“There are, however, limitations to the method.” says Manuel Endres. “We are imaging the density including all fluctuations and correlations but do not have direct access to coherence and entanglement properties of many-body states using this technique.” In his theoretical work, he is developing schemes to overcome these limitations. “I would really like to understand what is going on in these complex systems; in particular: Which information can we actually obtain experimentally? And, how much control can we possibly achieve at the microscopic level?” Endres concludes.

During his short career, Manuel Endres has already received quite a lot of recognition. From November 2003 until March 2008, Manuel Endres received a grant from the The German National Merit Foundation. The eminent scientific value of his thesis is further underlined by two other awards: last year Manuel Endres was elected by the Münchner Universitätsgesellschaft for the Promotionspreis, in addition, his thesis “Probing correlated quantum many-body systems at the single-particle level” has been published as a book by the Springer-Verlag. Dr Endres will be presented with the Otto Hahn Medal on the occasion of the General Meeting of the Max Planck Society in Munich on June 4th, 2014. [Olivia Meyer-Streng]

Contact:

Dr. Manuel Endres
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -239
E-mail: manuel.endres@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw - Informationsdienst Wissenschaft
Further information:
http://www.mpq.mpg.de/

Further reports about: Many-Body Max-Planck-Institut Quantenoptik Quantum technique thesis

More articles from Awards Funding:

nachricht Frank Feldmann Receives SolarWorld Junior Einstein Award 2016
27.06.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Dr. Karl-Robert Brauns Prize for Ophthalmology 2016
16.06.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>