Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manuel Endres receives Otto Hahn Medal from the Max Planck Society

04.06.2014

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013.

For his excellent doctoral thesis, the young physicist Manuel Endres has been awarded with the Otto Hahn Medal 2013. Since 1978 the Max Planck Society presents this honour annually to junior scientists for groundbreaking scientific achievements connected to their doctoral thesis.


Manuel Endres (Photo: MPQ)

The award is intended to encourage highly talented people to decide for a career in fundamental research. Dr Endres receives the medal, endowed with prize money, for his new technique in detecting single atoms in optical lattices, developed in the Quantum Many-Body Systems Division of Prof. Immanuel Bloch at the Max Planck Institute of Quantum Optics.

Having finished his thesis in March 2013 Manuel Endres started to treat these topics from a more theoretical point of view, working in the Theory Division of Prof. Ignacio Cirac.

Manuel Endres (Photo: MPQ), born in Würzburg (Germany), began his education with the study of Computer Science at the University of Applied Sciences Würzburg. After his pre-diploma, he went to the Philipps-Universität Marburg to study physics. There, he received his physics diploma in 2008. His diploma thesis was supervised by Prof. Immanuel Bloch (at that time Chair of Experimental Physics at the Johannes-Gutenberg-Universität Mainz).

In 2008, Manuel Endres started to work on his doctoral thesis in the Quantum Many-Body Systems Division of Prof. Bloch at MPQ, completing in March 2013 with summa cum laude. With the support of Prof. Stefan Kuhr (now at the University of Strathclyde, Scotland) he was able to develop a novel technique for the detection of single atoms in optical lattices.

In the past years, ultracold quantum gases have proven to be excellent models of strongly interacting many-body systems, from extended stellar systems to high-tech materials. The new method aims at understanding such complex systems at the level of individual particles.

A high-resolution objective collects the fluorescence light and yields in-situ snapshots of the quantum gas, which allows for a single-site-resolved reconstruction of the atomic distribution. A series of such snap shots provides information on the particle correlations. For the first time, even non-local correlations between atoms on different lattice sites can be experimentally detected. In addition, the highly sensitive technique could be used to detect, for the first time, an ‘Higgs’ amplitude mode close to a low-dimensional quantum phase transition.

“There are, however, limitations to the method.” says Manuel Endres. “We are imaging the density including all fluctuations and correlations but do not have direct access to coherence and entanglement properties of many-body states using this technique.” In his theoretical work, he is developing schemes to overcome these limitations. “I would really like to understand what is going on in these complex systems; in particular: Which information can we actually obtain experimentally? And, how much control can we possibly achieve at the microscopic level?” Endres concludes.

During his short career, Manuel Endres has already received quite a lot of recognition. From November 2003 until March 2008, Manuel Endres received a grant from the The German National Merit Foundation. The eminent scientific value of his thesis is further underlined by two other awards: last year Manuel Endres was elected by the Münchner Universitätsgesellschaft for the Promotionspreis, in addition, his thesis “Probing correlated quantum many-body systems at the single-particle level” has been published as a book by the Springer-Verlag. Dr Endres will be presented with the Otto Hahn Medal on the occasion of the General Meeting of the Max Planck Society in Munich on June 4th, 2014. [Olivia Meyer-Streng]

Contact:

Dr. Manuel Endres
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -239
E-mail: manuel.endres@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw - Informationsdienst Wissenschaft
Further information:
http://www.mpq.mpg.de/

Further reports about: Many-Body Max-Planck-Institut Quantenoptik Quantum technique thesis

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>