Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Launch of GenoCon - First-ever contest in rational genome design based on semantic-web technology

The Bioinformatics And Systems Engineering (BASE), a division of RIKEN, Japan¡¯s flagship research institute, is holding its first ever International Rational Genome Design Contest (GenoCon) on the semantic web between May 25 and September 30.

The Bioinformatics And Systems Engineering (BASE), a division of RIKEN, Japan¡¯s flagship research institute, is holding its first ever International Rational Genome Design Contest (GenoCon) on the semantic web between May 25 and September 30.

GenoCon: An international science and technology competition supporting future specialists in rational genome design for Synthetic Biology

First-ever contest in rational genome design based on semantic-web technology


- A challenge for green innovation: rational genome design of a plant with an environmental detoxification function.

- Collection and sharing of genome-design theories and programs from researchers around the world.

- Web-based contest aimed at supporting a future generation of scientists ¨C including a category for high-school students.

The Bioinformatics And Systems Engineering (BASE), a division of RIKEN, Japan¡¯s flagship research institute, is holding its first ever International Rational Genome Design*1 Contest (GenoCon) on the semantic web. The contest makes use of an information infrastructure for life science research known as the RIKEN Scientists¡¯ Networking System (SciNeS*2) and will take place between May 25 and September 30.

Built upon semantic web technology, GenoCon is the first contest of its kind, offering contestants the chance to compete in technologies for rational genome design. To succeed, contestants must make effective use of genomic and protein data contained in SciNeS database clusters to design DNA sequences that improve plant physiology. In the first GenoCon, contestants are asked to design a DNA sequence conferring to the model organism Arabidopsis thaliana the functionality to effectively eliminate and detoxify airborne Formaldehyde.

For their part, contestants are constrained to so-called bioinformatics activities, designing DNA sequences from genomic-related information in a browser-based programming environment provided by SciNeS (Fig.1). RIKEN and other research institutes are then responsible for inserting these DNA sequences into genomes and evaluating experimentally the functions of the resulting Arabidopsis thaliana plants.

A new web-based framework for collaboration in synthetic biology, referred to as ¡°open-optimization research*3¡±, is provided to GenoCon contestants to help make effective use of DNA information resources in creating improved bio-resources. Genome design theories and programs submitted by contestants from all over the world will be compiled within RIKEN SciNeS and shared under a Creative Commons Public License, contributing to advancements in biomass engineering and other fields of Green Biotechnology.

GenoCon also offers, in addition to categories for Japanese and international researchers and university students, a category specifically for high-school students. Just as ROBOCON (Robot Contest), GenoCon thus provides opportunities for young people to learn about the most cutting-edge science with a sense of pleasure, bringing intellectual excitement to the field of Life Science and supporting a future generation of scientists.

GenoCon will be accepting entries to the contest starting May 25, 2010 at the official GenoCon website:

For more information, please contact:

Dr. Tetsuro Toyoda
Director, Bioinformatics And Systems Engineering£¨BASE) Division
RIKEN Yokohama Institute
Tel: +81-(0)45-503-9610 / Fax: +81-(0)45-503-9553
Planning Section
Yokohama Research Promotion Division
RIKEN Yokohama Institute
Tel: +81-(0)45-503-9117 / Fax: +81-(0)45-503-9113
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
*1 Rational Genome Design
¡°Rational Design¡± is a methodology for finding the optimal structure of substances introduced into target organisms for the purpose of conferring new functions to them. The methodology uses an algorithm that determines the optimal structure logically based on data obtained from the organism.

¡°Rational Genome Design¡± is a methodology for finding optimal DNA sequences that confer new functions to a target organism. ¡°Rational Drug Design¡± is a methodology for finding optimal compound chemical structure which confers a desired function to an organism.


RIKEN SciNeS (Scientists¡¯ Networking System) is a web system built upon the ¡°Semantic Web¡±. Making use of the latest cloud computing technology, the system is capable of simultaneously hosting upwards of thousands of virtual laboratories, providing every individual user with access control to each data item. The system is being developed and operated by the Bioinformatics And Systems Engineering (BASE) division of RIKEN (

Virtual labs on the RIKEN SciNeS system enable each lab owner (researcher) to easily create and publish databases without the need to maintain individual web servers. This information infrastructure can be beneficial for researchers in implementing international collaborative research. In addition, each virtual lab can also organize competitions or initiate open participatory research.

GenoCon is to be organized using one of the virtual labs on RIKEN SciNeS. Each contestant in GenoCon establishes a workspace (named ¡°My Page¡±) in the virtual lab (named ¡°GenoCon¡±). Virtual labs on RIKEN SciNeS are used as an integrated life science information infrastructure incorporating functions including a programming environment, a digital lab notes system, and information resources for biomass engineering research activities. By releasing some of these functions, GenoCon offers an environment for open-optimization research in which contestants can submit more optimal DNA sequence designs, potentially conferring to the plant Arabidopsis the target function assigned by the GenoCon organizers.

*3 Open Optimization Research

RIKEN SciNeS provides a new framework for collaboration called ¡°Open Optimization Research¡± in which the process for optimizing an invention is carried out by numerous contestants/participants in an open manner, rather than by members of the closed group of inventors.

It is often the case that a DNA sequence is initially synthesized by researchers in order to verify a given idea in the easiest way possible. However, this initially-tested DNA sequence may not be optimal among the patented DNA sequences that are claimed to confer a desired function to a living organism.

Optimal design of DNA sequences requires that researchers conduct enough tests to find optimal examples among patented DNA sequences, which demands securing research financing. Designing optimal sequences also requires bioinformatics specialists with the skills to make use of existing knowledge and data while keeping in mind the genetic background of each organism. As a result of these requirements, many DNA sequences, while protected by patents, are never actually put into practical use by their inventors due to a lack of necessary resources (in a phenomenon referred to as the ¡°Valley of Death¡±).

We propose Open Optimization Research as a way to overcome this problem by providing opportunities to optimize the design of DNA sequences with the help of external participants to the research process (Fig. 2). GenoCon offers incentives for researchers and sponsors that make it attractive for them to join the contest. (Fig.3)

Open Optimization Research is also a framework for ¡°Open Innovation¡±, in which a company or a university with a desire to develop a practical use for its patented invention is matched with potential partners that have their own original technologies. A successful match can help propel an invention toward practical applications.

gro-pr | Research asia research news
Further information:

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>