Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly understanding the Brain: 2. Transatlantic Collaborations round in Computational Neuroscience

21.12.2011
Collaborations between Germany and the United States in the field of Computational Neuroscience are being expanded. Six new projects will be funded in the coming three years by a total of 2.6 million Euros.

The projects are characterized by close links between experimental and theoretical approaches in exploring the brain. This is the second funding round of a joint German-American funding initiative by the German Federal Ministry for Education and Research (BMBF), the National Science Foundation (NSF) and the National Institutes of Health (NIH).

The funded projects investigate the following topics:

Abnormal long-lasting neuronal discharges in the cerebral cortex are suspected to be responsible for migraine attacks. Dr. Markus Dahlem from the Technische Universität Berlin wants to find out together with colleagues at Pennsylvania State University, State College, whether these discharges can be controlled by the influence of electric fields in a closed loop. This will be investigated in computer as well as in animal models.

Patterns of brain activity that are measured with imaging techniques differ between individuals, even for identical stimulations. In collaboration with colleagues from Dartmouth College, Hanover, and Princeton University, Princeton, Dr. Michael Hanke of the Otto von Guericke University Magdeburg wants to develop new methods to improve comparability. These methods would allow analysis of individual patterns and transformation between these patterns. Thus, even intrinsic processes such as social cognition should become comparable.

How does the brain perfectly accomplish the task of reconstructing the three-dimensional world from a two-dimensional image on our retina? Prof. Roland Fleming, Justus-Liebig-University, Giessen, and his colleagues at Yale University, New Haven, examine whether cells that recognize the intensity patterns of images enable us to experience a three-dimensional perception of the world. This will be investigated using psychophysical experiments and computer models.

Sensory systems must highly efficiently filter complex characteristics and patterns from a huge amount of information. How this takes place in the olfactory bulb, Dr. Andreas Schaefer of the Max Planck Institute for Medical Research, Heidelberg, wants to examine jointly with researchers from Cornell University, Ithaca. Among other things, they will investigate the functional role of inhibitory cells during contrast enhancement of information, using optogenetic methods.

How are the function and the dendritic structure of a nerve cell coupled? This is what Prof. Stefan Remy from the German Centre for Neurodegenerative Diseases, Bonn, wants to find out in collaboration with scientists from Northwestern University, Evanston, Stanford University, Stanford, and the Janelia Farm Research Campus HHMI, Ashburn. Using a combination of new microscopic techniques, they will study cells from the hippocampus that play an important role in memory and other cognitive processes.

How is the brain able to successfully perform many different tasks with the same neurons? Prof. Cornelius Schwarz of the Werner Reichardt Centre for Integrative Neuroscience, Tübingen, will examine this question in collaboration with scientists at Georgia Tech and Emory University, Atlanta, using the example of the rat’s whisker system. Neuronal coding will be described with the help of statistical models and the researchers will try to show how sensory tasks can be adapted to current perceptional requirements.

In 2010, five projects were chosen for the first funding round, in which a total of 3.4 million Euros was invested. In Germany, the projects are integrated into the National Bernstein Network for Computational Neuroscience (NNCN).The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of Computational Neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Johannes Faber | idw
Further information:
http://www.nncn.de/

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>