Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly understanding the Brain: 2. Transatlantic Collaborations round in Computational Neuroscience

21.12.2011
Collaborations between Germany and the United States in the field of Computational Neuroscience are being expanded. Six new projects will be funded in the coming three years by a total of 2.6 million Euros.

The projects are characterized by close links between experimental and theoretical approaches in exploring the brain. This is the second funding round of a joint German-American funding initiative by the German Federal Ministry for Education and Research (BMBF), the National Science Foundation (NSF) and the National Institutes of Health (NIH).

The funded projects investigate the following topics:

Abnormal long-lasting neuronal discharges in the cerebral cortex are suspected to be responsible for migraine attacks. Dr. Markus Dahlem from the Technische Universität Berlin wants to find out together with colleagues at Pennsylvania State University, State College, whether these discharges can be controlled by the influence of electric fields in a closed loop. This will be investigated in computer as well as in animal models.

Patterns of brain activity that are measured with imaging techniques differ between individuals, even for identical stimulations. In collaboration with colleagues from Dartmouth College, Hanover, and Princeton University, Princeton, Dr. Michael Hanke of the Otto von Guericke University Magdeburg wants to develop new methods to improve comparability. These methods would allow analysis of individual patterns and transformation between these patterns. Thus, even intrinsic processes such as social cognition should become comparable.

How does the brain perfectly accomplish the task of reconstructing the three-dimensional world from a two-dimensional image on our retina? Prof. Roland Fleming, Justus-Liebig-University, Giessen, and his colleagues at Yale University, New Haven, examine whether cells that recognize the intensity patterns of images enable us to experience a three-dimensional perception of the world. This will be investigated using psychophysical experiments and computer models.

Sensory systems must highly efficiently filter complex characteristics and patterns from a huge amount of information. How this takes place in the olfactory bulb, Dr. Andreas Schaefer of the Max Planck Institute for Medical Research, Heidelberg, wants to examine jointly with researchers from Cornell University, Ithaca. Among other things, they will investigate the functional role of inhibitory cells during contrast enhancement of information, using optogenetic methods.

How are the function and the dendritic structure of a nerve cell coupled? This is what Prof. Stefan Remy from the German Centre for Neurodegenerative Diseases, Bonn, wants to find out in collaboration with scientists from Northwestern University, Evanston, Stanford University, Stanford, and the Janelia Farm Research Campus HHMI, Ashburn. Using a combination of new microscopic techniques, they will study cells from the hippocampus that play an important role in memory and other cognitive processes.

How is the brain able to successfully perform many different tasks with the same neurons? Prof. Cornelius Schwarz of the Werner Reichardt Centre for Integrative Neuroscience, Tübingen, will examine this question in collaboration with scientists at Georgia Tech and Emory University, Atlanta, using the example of the rat’s whisker system. Neuronal coding will be described with the help of statistical models and the researchers will try to show how sensory tasks can be adapted to current perceptional requirements.

In 2010, five projects were chosen for the first funding round, in which a total of 3.4 million Euros was invested. In Germany, the projects are integrated into the National Bernstein Network for Computational Neuroscience (NNCN).The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of Computational Neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Johannes Faber | idw
Further information:
http://www.nncn.de/

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>