Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly understanding the Brain: 2. Transatlantic Collaborations round in Computational Neuroscience

21.12.2011
Collaborations between Germany and the United States in the field of Computational Neuroscience are being expanded. Six new projects will be funded in the coming three years by a total of 2.6 million Euros.

The projects are characterized by close links between experimental and theoretical approaches in exploring the brain. This is the second funding round of a joint German-American funding initiative by the German Federal Ministry for Education and Research (BMBF), the National Science Foundation (NSF) and the National Institutes of Health (NIH).

The funded projects investigate the following topics:

Abnormal long-lasting neuronal discharges in the cerebral cortex are suspected to be responsible for migraine attacks. Dr. Markus Dahlem from the Technische Universität Berlin wants to find out together with colleagues at Pennsylvania State University, State College, whether these discharges can be controlled by the influence of electric fields in a closed loop. This will be investigated in computer as well as in animal models.

Patterns of brain activity that are measured with imaging techniques differ between individuals, even for identical stimulations. In collaboration with colleagues from Dartmouth College, Hanover, and Princeton University, Princeton, Dr. Michael Hanke of the Otto von Guericke University Magdeburg wants to develop new methods to improve comparability. These methods would allow analysis of individual patterns and transformation between these patterns. Thus, even intrinsic processes such as social cognition should become comparable.

How does the brain perfectly accomplish the task of reconstructing the three-dimensional world from a two-dimensional image on our retina? Prof. Roland Fleming, Justus-Liebig-University, Giessen, and his colleagues at Yale University, New Haven, examine whether cells that recognize the intensity patterns of images enable us to experience a three-dimensional perception of the world. This will be investigated using psychophysical experiments and computer models.

Sensory systems must highly efficiently filter complex characteristics and patterns from a huge amount of information. How this takes place in the olfactory bulb, Dr. Andreas Schaefer of the Max Planck Institute for Medical Research, Heidelberg, wants to examine jointly with researchers from Cornell University, Ithaca. Among other things, they will investigate the functional role of inhibitory cells during contrast enhancement of information, using optogenetic methods.

How are the function and the dendritic structure of a nerve cell coupled? This is what Prof. Stefan Remy from the German Centre for Neurodegenerative Diseases, Bonn, wants to find out in collaboration with scientists from Northwestern University, Evanston, Stanford University, Stanford, and the Janelia Farm Research Campus HHMI, Ashburn. Using a combination of new microscopic techniques, they will study cells from the hippocampus that play an important role in memory and other cognitive processes.

How is the brain able to successfully perform many different tasks with the same neurons? Prof. Cornelius Schwarz of the Werner Reichardt Centre for Integrative Neuroscience, Tübingen, will examine this question in collaboration with scientists at Georgia Tech and Emory University, Atlanta, using the example of the rat’s whisker system. Neuronal coding will be described with the help of statistical models and the researchers will try to show how sensory tasks can be adapted to current perceptional requirements.

In 2010, five projects were chosen for the first funding round, in which a total of 3.4 million Euros was invested. In Germany, the projects are integrated into the National Bernstein Network for Computational Neuroscience (NNCN).The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of Computational Neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Johannes Faber | idw
Further information:
http://www.nncn.de/

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>