Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovation Award Laser Technology for Dr. Ir. Armand Pruijmboom, Philips GmbH Photonics Aachen


The Innovation Award Laser Technology 2016, initiated by the associations Arbeitskreis Lasertechnik e.V. and the European Laser Institute ELI and provided with 10 000 € prize money, has been conferred to Dr. Ir. Armand Pruijmboom, General Manager of Philips GmbH Photonics Aachen on 27th April 2016 in Aachen´s town hall. Dr. Ir. Armand Pruijmboom and his team have got the first place in the open prize competition with the innovation VCSEL arrays: A novel high-power laser technology for “digital thermal processing".

The jury composed by ten international experts has selected 3 outstanding finalists among the 15 submitted applications. In the historical ambience of the »Coronation Hall« around 320 guests attended the awarding ceremony.

The winner team of the Innovation Award Laser Technology 2016: Philips GmbH Photonics Aachen, team representative: Dr. Ir. Armand Pruijmboom, (4th from the left)

Fraunhofer ILT / Andreas Steindl. (See complete caption at

Dr. Paul Hilton, speaker of the international jury, pointed out the outstanding innovations of the 3 finalist project teams in the field of laser technology. The jury conferred the 1st prize of the Innovation Award Laser Technology 2016 provided with 10 000 € prize money to

Dr. Ir. Armand Pruijmboom, General Manager of Philips GmbH Photonics Aachen (Germany) and his team for the innovation VCSEL arrays: A novel high-power laser technology for “digital thermal processing". VCSEL stands for Vertical-cavity surface emitting laser-diodes.

The innovative work of the Philips team consists in the development of the VCSEL array chips dedicated for high power application, the packaging and thermal management of the VCSEL arrays including comprehensive finite-element modeling, the system design by tailoring packages of various “standard building blocks” to specific industrial applications and finally the application development itself.

The prize winner Dr. Ir. Armand Pruijmboom has been awarded the title of »AKL Fellow« and »ELI Fellow«. The certificates for the first, second and third placed finalist teams were handed over during the award ceremony in Aachen by Ulrich Berners, president of the Arbeitskreis Lasertechnik AKL e.V. and Dr. Paul Hilton, president of the European Laser Institute ELI.

The Innovation Award Laser Technology is a European prize for applied research awarded at 2-yearly intervals by the associations Arbeitskreis Lasertechnik e.V. and the European Laser Institute ELI. The award can be conferred on an individual researcher or on an entire project group, whose exceptional skills and dedicated work have led to an outstanding innovation in the field of laser technology.

The scientific and technological projects in question must center on the use of laser light in materials processing or the methods of producing such light, and must furthermore be of demonstrable commercial value to industry.

The international jury composed by 10 members selected on the basis of merit and the published criteria 3 outstanding finalists among the 15 applications for the Innovation Award Laser Technology 2016 (see detailed descriptions of the three innovations including photos on

The 3 finalists and their teams listed in final ranking:

1st Place
VCSEL arrays: A novel high-power laser technology for “digital thermal processing"
Dr. Ir. Armand Pruijmboom, Philips GmbH Photonics Aachen, Germany (Team Representative)
Dr. Günther Derra, Philips GmbH Photonics Aachen
Dr. Pavel Pekarski, Philips GmbH Photonics Aachen
Dipl.-Ing. Carsten Deppe, Philips GmbH Photonics Aachen
Dipl.-Ing. Ralf Conrads, Philips GmbH Photonics Aachen
B. Sc. Felix Ogiewa, Philips GmbH Photonics Aachen

Industrial manufacturing equipment for heating large areas with high throughput conventionally uses among others gas burners, hot air blowers and electrically or halogen lamp heated belt ovens. Due to their limited power density, high thermal inertia and low spatial selectivity, these heating methods can be switched on and off only slowly.

Furthermore, they are inaccurate and cannot easily deposit the heat only where it is needed or do not allow to impose sophisticated spatial thermal profiles on a work piece. On the other side conventional laser technology has disadvantages in this application mainly for cost reasons. Development of high power lasers has traditionally focused on brightness. Treating large surfaces with high brightness sources requires either complex optics or scanning systems. Each one comes along with technical limitations but more importantly with a severe cost impact. Vertical-cavity surface emitting laser-diodes (VCSEL´s) offer an innovative solution by heating only when and where it is needed in a short time with cost effective, compact and robust systems. Compared to conventional non-laser based heating technologies, VCSEL arrays offer flexibility, high efficiency and lifetime. As a solid state technology VCSEL´s fuel the trend to fully digitized manufacturing flows. The technology is bound to penetrate a large number of manufacturing processes and thereby adds a new and cost effective member to the family of high power lasers.

2nd Place
Laser Beam Remote Welding of Aluminium for Automotive Lightweight Design
Dr.-Ing. Jan-Philipp Weberpals, AUDI AG, Neckarsulm, Germany
(Team Representative)
Dipl.-Ing. Steffen Müller, AUDI AG, Neckarsulm
Daniel Böhm, AUDI AG, Neckarsulm

The core of future automotive lightweight design is a flexible and at the same time stable joining technology of lightweight materials. A new approach in particular is laser beam remote welding of aluminium. The continuous challenge during this innovation was to combine the known options of laser beam remote welding of steel components with the material-specific properties of aluminium materials within a process. Up to now laser beam welding of monolithic aluminium joints, in particular using a fillet weld connection in a lap joint, has been realized only with tactile-guided processing optics. This results in an increase of process time. The laser beam remote welding demonstrates time savings of approximately 53% when compared to tactile laser welding. The method enables heat management control in the part. Exact positioning of the laser beam in relation to the edge reduces susceptibility to hot cracking because of precise weld penetration control. The gap dimension between the parts can also be determined during the joining process, and can be effectively closed by control strategies. Process efficiency is enhanced by eliminating the need for supplemental welding wire and protective gases. This reduces ongoing production costs. Moreover heat-related distortion is reduced. All of these advantages pay off, especially the ability to implement lightweight design with smaller flanges. The welds in the door frame of the Audi A8 illustrate this well. Audi is the first car manufacturer being able to use laser beam remote welding to join conventional aluminium alloys.

3rd Place
UVblade - Flexible Display Manufacturing by the Meter
Dr. rer. nat. Ralph Delmdahl, Coherent LaserSystems GmbH & Co. KG,
Göttingen, Germany (Team Representative)
Dipl.-Phys. Thorsten Geuking, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dr. rer. nat. Sven Passinger, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dipl.-Ing. Rainer Pätzel, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dr.-Ing. Kai Schmidt, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dipl.-Phys. Hans-Stephan Albrecht, Coherent LaserSystems GmbH & Co. KG,

Mobile devices with novel flexible displays have just started to enter the market. Smartwatches thin and light as a feather with round-shaped and high resolution
display as well as smartphones with individual display shapes and designs are found in everyday live and combine functionality with attractivity. The supply of curved TV- screens evolves continually. It is also conceivable to stow the complete hardware in a handle and pull the rolled up display out like an ancient papyrus scroll. As of today, the flexible display market is about to transform from a niche to a mass market.
The UVblade system provides a meter-long, thin blade of UV laser light which smoothly separates a flexible polymer layer from the rigid glass carrier in the so-called lift-off process. The separated display electronics layers reside thus on the lightweight and bendable polymer film resulting in a paper thin and flexible display. Via laser lift-off processing with the UVblade it is possible for the first time to transfer displays (LCDs, OLEDs, electrophoretic displays) to ten times thinner and more lightweight polymer
carriers. Alternative separation techniques are largely unsuitable for mass production.

Chemical etch processing for example is slow and unspecific while frequency- converted laser technologies provide only scarce output power in the UV. With the innovative development of the UVblade platform the Coherent team has brought an excimer laser system to the market which enables the cost-efficient volume production of the latest generation of flexible displays independent of the display diagonal.

The 10 members of the international jury of the Innovation Award Laser Technology 2016 have been recruited from industry and the research community:

• Dr. Keming Du, EdgeWave GmbH, Würselen, Germany
• Dr. Paul Hilton, TWI, Cambridge, United Kingdom
• Prof. Dr. Wolfgang Knapp, CLFA, Université de Nantes, France
• Dr. Alexander Knitsch, Trumpf Laser GmbH & Co KG, Ditzingen, Germany
• Dipl.-Ing. Volker Krause, Laserline GmbH, Mülheim-Kärlich, Germany
• Prof. Dr. Veli Kujanpää, VTT, Lappeenranta, Finland
• Prof. Dr. José Luis Ocaña, Centro Láser U.P.M., Madrid, Spain
• Prof. Dr. Andreas Ostendorf, Ruhr-Universität Bochum, Germany
• Dr. Jochen Stollenwerk, Lehrstuhl TOS, RWTH Aachen, Germany
• Dipl.-Ing. Stefan Wischmann, ThyssenKrupp Steel AG, Duisburg, Germany

Further information:

- Regarding the award and the finalists:
Descriptions of the realized innovations of the 3 finalists and photos of the
awarding ceremony on 27th April 2016 in Aachen´s town hall can be
downloaded here.

- Regarding Arbeitskreis Lasertechnik AKL e.V.:
Contact person: Axel Bauer, General Secretary of Arbeitskreis Lasertechnik
Phone: +49/241/8906-194, Mobile: +49/170/3309769

- Regarding European Laser Institute ELI:
Contact person: Dr. Paul Hilton, President of the European Laser Institute,
Phone: +44/1223 899000, Fax: +44/1223 892588

- Regarding International Laser Technology Congress AKL´16 (27-29 April 2016):
Contact persons: Axel Bauer, Silke Boehr, Marketing and Communications,
Fraunhofer-Institut für Lasertechnik ILT,
Tel: +49/241/8906-0, Fax: +49/241/8906-121, Email:

Weitere Informationen:

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>