Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation Award Laser Technology for Dr. Ir. Armand Pruijmboom, Philips GmbH Photonics Aachen

28.04.2016

The Innovation Award Laser Technology 2016, initiated by the associations Arbeitskreis Lasertechnik e.V. and the European Laser Institute ELI and provided with 10 000 € prize money, has been conferred to Dr. Ir. Armand Pruijmboom, General Manager of Philips GmbH Photonics Aachen on 27th April 2016 in Aachen´s town hall. Dr. Ir. Armand Pruijmboom and his team have got the first place in the open prize competition with the innovation VCSEL arrays: A novel high-power laser technology for “digital thermal processing".

The jury composed by ten international experts has selected 3 outstanding finalists among the 15 submitted applications. In the historical ambience of the »Coronation Hall« around 320 guests attended the awarding ceremony.


The winner team of the Innovation Award Laser Technology 2016: Philips GmbH Photonics Aachen, team representative: Dr. Ir. Armand Pruijmboom, (4th from the left)

Fraunhofer ILT / Andreas Steindl. (See complete caption at s.fhg.de/

Dr. Paul Hilton, speaker of the international jury, pointed out the outstanding innovations of the 3 finalist project teams in the field of laser technology. The jury conferred the 1st prize of the Innovation Award Laser Technology 2016 provided with 10 000 € prize money to

Dr. Ir. Armand Pruijmboom, General Manager of Philips GmbH Photonics Aachen (Germany) and his team for the innovation VCSEL arrays: A novel high-power laser technology for “digital thermal processing". VCSEL stands for Vertical-cavity surface emitting laser-diodes.

The innovative work of the Philips team consists in the development of the VCSEL array chips dedicated for high power application, the packaging and thermal management of the VCSEL arrays including comprehensive finite-element modeling, the system design by tailoring packages of various “standard building blocks” to specific industrial applications and finally the application development itself.

The prize winner Dr. Ir. Armand Pruijmboom has been awarded the title of »AKL Fellow« and »ELI Fellow«. The certificates for the first, second and third placed finalist teams were handed over during the award ceremony in Aachen by Ulrich Berners, president of the Arbeitskreis Lasertechnik AKL e.V. and Dr. Paul Hilton, president of the European Laser Institute ELI.

The Innovation Award Laser Technology is a European prize for applied research awarded at 2-yearly intervals by the associations Arbeitskreis Lasertechnik e.V. and the European Laser Institute ELI. The award can be conferred on an individual researcher or on an entire project group, whose exceptional skills and dedicated work have led to an outstanding innovation in the field of laser technology.

The scientific and technological projects in question must center on the use of laser light in materials processing or the methods of producing such light, and must furthermore be of demonstrable commercial value to industry.

The international jury composed by 10 members selected on the basis of merit and the published criteria 3 outstanding finalists among the 15 applications for the Innovation Award Laser Technology 2016 (see detailed descriptions of the three innovations including photos on www.innovation-award-laser.org).

The 3 finalists and their teams listed in final ranking:

1st Place
VCSEL arrays: A novel high-power laser technology for “digital thermal processing"
Team:
Dr. Ir. Armand Pruijmboom, Philips GmbH Photonics Aachen, Germany (Team Representative)
Dr. Günther Derra, Philips GmbH Photonics Aachen
Dr. Pavel Pekarski, Philips GmbH Photonics Aachen
Dipl.-Ing. Carsten Deppe, Philips GmbH Photonics Aachen
Dipl.-Ing. Ralf Conrads, Philips GmbH Photonics Aachen
B. Sc. Felix Ogiewa, Philips GmbH Photonics Aachen

Industrial manufacturing equipment for heating large areas with high throughput conventionally uses among others gas burners, hot air blowers and electrically or halogen lamp heated belt ovens. Due to their limited power density, high thermal inertia and low spatial selectivity, these heating methods can be switched on and off only slowly.

Furthermore, they are inaccurate and cannot easily deposit the heat only where it is needed or do not allow to impose sophisticated spatial thermal profiles on a work piece. On the other side conventional laser technology has disadvantages in this application mainly for cost reasons. Development of high power lasers has traditionally focused on brightness. Treating large surfaces with high brightness sources requires either complex optics or scanning systems. Each one comes along with technical limitations but more importantly with a severe cost impact. Vertical-cavity surface emitting laser-diodes (VCSEL´s) offer an innovative solution by heating only when and where it is needed in a short time with cost effective, compact and robust systems. Compared to conventional non-laser based heating technologies, VCSEL arrays offer flexibility, high efficiency and lifetime. As a solid state technology VCSEL´s fuel the trend to fully digitized manufacturing flows. The technology is bound to penetrate a large number of manufacturing processes and thereby adds a new and cost effective member to the family of high power lasers.


2nd Place
Laser Beam Remote Welding of Aluminium for Automotive Lightweight Design
Team:
Dr.-Ing. Jan-Philipp Weberpals, AUDI AG, Neckarsulm, Germany
(Team Representative)
Dipl.-Ing. Steffen Müller, AUDI AG, Neckarsulm
Daniel Böhm, AUDI AG, Neckarsulm

The core of future automotive lightweight design is a flexible and at the same time stable joining technology of lightweight materials. A new approach in particular is laser beam remote welding of aluminium. The continuous challenge during this innovation was to combine the known options of laser beam remote welding of steel components with the material-specific properties of aluminium materials within a process. Up to now laser beam welding of monolithic aluminium joints, in particular using a fillet weld connection in a lap joint, has been realized only with tactile-guided processing optics. This results in an increase of process time. The laser beam remote welding demonstrates time savings of approximately 53% when compared to tactile laser welding. The method enables heat management control in the part. Exact positioning of the laser beam in relation to the edge reduces susceptibility to hot cracking because of precise weld penetration control. The gap dimension between the parts can also be determined during the joining process, and can be effectively closed by control strategies. Process efficiency is enhanced by eliminating the need for supplemental welding wire and protective gases. This reduces ongoing production costs. Moreover heat-related distortion is reduced. All of these advantages pay off, especially the ability to implement lightweight design with smaller flanges. The welds in the door frame of the Audi A8 illustrate this well. Audi is the first car manufacturer being able to use laser beam remote welding to join conventional aluminium alloys.

3rd Place
UVblade - Flexible Display Manufacturing by the Meter
Team:
Dr. rer. nat. Ralph Delmdahl, Coherent LaserSystems GmbH & Co. KG,
Göttingen, Germany (Team Representative)
Dipl.-Phys. Thorsten Geuking, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dr. rer. nat. Sven Passinger, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dipl.-Ing. Rainer Pätzel, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dr.-Ing. Kai Schmidt, Coherent LaserSystems GmbH & Co. KG, Göttingen
Dipl.-Phys. Hans-Stephan Albrecht, Coherent LaserSystems GmbH & Co. KG,
Göttingen

Mobile devices with novel flexible displays have just started to enter the market. Smartwatches thin and light as a feather with round-shaped and high resolution
display as well as smartphones with individual display shapes and designs are found in everyday live and combine functionality with attractivity. The supply of curved TV- screens evolves continually. It is also conceivable to stow the complete hardware in a handle and pull the rolled up display out like an ancient papyrus scroll. As of today, the flexible display market is about to transform from a niche to a mass market.
The UVblade system provides a meter-long, thin blade of UV laser light which smoothly separates a flexible polymer layer from the rigid glass carrier in the so-called lift-off process. The separated display electronics layers reside thus on the lightweight and bendable polymer film resulting in a paper thin and flexible display. Via laser lift-off processing with the UVblade it is possible for the first time to transfer displays (LCDs, OLEDs, electrophoretic displays) to ten times thinner and more lightweight polymer
carriers. Alternative separation techniques are largely unsuitable for mass production.

Chemical etch processing for example is slow and unspecific while frequency- converted laser technologies provide only scarce output power in the UV. With the innovative development of the UVblade platform the Coherent team has brought an excimer laser system to the market which enables the cost-efficient volume production of the latest generation of flexible displays independent of the display diagonal.

The 10 members of the international jury of the Innovation Award Laser Technology 2016 have been recruited from industry and the research community:

• Dr. Keming Du, EdgeWave GmbH, Würselen, Germany
• Dr. Paul Hilton, TWI, Cambridge, United Kingdom
• Prof. Dr. Wolfgang Knapp, CLFA, Université de Nantes, France
• Dr. Alexander Knitsch, Trumpf Laser GmbH & Co KG, Ditzingen, Germany
• Dipl.-Ing. Volker Krause, Laserline GmbH, Mülheim-Kärlich, Germany
• Prof. Dr. Veli Kujanpää, VTT, Lappeenranta, Finland
• Prof. Dr. José Luis Ocaña, Centro Láser U.P.M., Madrid, Spain
• Prof. Dr. Andreas Ostendorf, Ruhr-Universität Bochum, Germany
• Dr. Jochen Stollenwerk, Lehrstuhl TOS, RWTH Aachen, Germany
• Dipl.-Ing. Stefan Wischmann, ThyssenKrupp Steel AG, Duisburg, Germany

Further information:

- Regarding the award and the finalists: www.innovation-award-laser.org
Descriptions of the realized innovations of the 3 finalists and photos of the
awarding ceremony on 27th April 2016 in Aachen´s town hall can be
downloaded here.

- Regarding Arbeitskreis Lasertechnik AKL e.V.: www.akl-ev.de
Contact person: Axel Bauer, General Secretary of Arbeitskreis Lasertechnik
Phone: +49/241/8906-194, Mobile: +49/170/3309769
Email: axel.bauer@akl-ev.de

- Regarding European Laser Institute ELI: www.europeanlaserinstitute.org
Contact person: Dr. Paul Hilton, President of the European Laser Institute,
Phone: +44/1223 899000, Fax: +44/1223 892588
Email: contact@europeanlaserinstitute.org

- Regarding International Laser Technology Congress AKL´16 (27-29 April 2016):
www.lasercongress.org
Contact persons: Axel Bauer, Silke Boehr, Marketing and Communications,
Fraunhofer-Institut für Lasertechnik ILT, www.ilt.fraunhofer.de
Tel: +49/241/8906-0, Fax: +49/241/8906-121, Email: info@ilt.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/Q6Q

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>