Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact Specialist to Receive Shoemaker Memorial Award

06.03.2009
University of Arizona’s planetary scientist and impact specialist H. Jay Melosh is this year’s recipient of the Eugene Shoemaker Memorial Award presented by the BEYOND Center for Fundamental Concepts in Science at Arizona State University.

As part of the honor, Melosh will deliver the annual Shoemaker Memorial lecture at 7:30 p.m. March 4 at ASU. The title of his talk is “Our Catastrophic Solar System: Impacts and the Latest Revolution in Earth Science.”

“From the impact-scarred faces of the moon and Mars, to the death of the dinosaurs, impacts have set the course of planetary evolution,” says Melosh. “We now believe that the moon itself was born in a planetary scale impact between the Earth and a Mars-size protoplanet about 4.5 billion years ago.”

Melosh, a Regents’ Professor of Planetary Science at UA’s Lunar and Planetary Lab, is a science team member of NASA’s deep impact mission that successfully cratered comet Tempel 1 on July 4, 2005.

“Impacts have brought us samples of Mars and the moon in the form of meteorites and may have transferred life from Earth to Mars or vice versa,” Melosh says. “Even now, asteroids that cut across the Earth’s orbit are being catalogued as potential threats to our civilization.

“The study of meteorite impacts has evolved from the obscure pastime of a few visionary scientists a half-century ago to the forefront of modern research,” Melosh says.

The transfer of life between Mars and Earth is something that Shoemaker himself speculated on in 1965, according to Melosh.

“It is particularly fitting to present the Shoemaker Award to Jay Melosh in the year of Darwin’s bicentenary, because Melosh was the first person to recognize that cosmic collisions can transfer life between Mars and Earth. It is now generally acknowledged that microbes can hitchhike on rocks blasted into space by big impacts, and travel across the solar system,” says Paul Davies, professor and director of the BEYOND Center in ASU’s College of Liberal Arts and Sciences.

Shoemaker was known for his pioneering research with his wife, Carolyn, in the field of asteroid and comet impacts. Last year’s recipient was Walter Alvarez, geologist and author of “T. rex and the Crater of Doom.” In 2007, Apollo 17 astronaut Harrison Schmitt was the first recipient of the award.

Among many other contributions to the field of astronomy, Shoemaker, his wife, and their friend David Levy, discovered a comet that collided with Jupiter in 1994. That comet was named the Shoemaker-Levy 9.

The Eugene Shoemaker Memorial Award is presented each year to a leading scientist in honor of his or her life and work.

This year’s recipient, Melosh, has received the Hess Medal from the American Geophysical Union in 2008, the Gilbert Prize from the Geological Society of America in 2001 and the Barringer Medal from the Meteoritical Society in 1999. He was a Guggenheim Fellow and a Humboldt Fellow at the Bavarian Geological Institute. He was elected to the U.S. National Academy of Sciences in 2003. The asteroid 8216 was named “Melosh” in his honor.

Melosh also is a fellow of the Meteoritical Society, Geological Society of America, American Geophysical Union, and American Association for the Advancement of Science.

His principal research interests include impact cratering, planetary tectonics, and the physics of earthquakes and landslides. His recent research includes the giant impact origin of the moon, Cretaceous-Tertiary boundary impact that extinguished the dinosaurs, ejection of rocks from their parent bodies, and origin and transfer of life between the planets.

Melosh received a doctorate in physics and geology from the California Institute of Technology and a bachelor’s degree in physics from Princeton University. He has published more than 170 technical papers, edited two books and is the author of “Impact Cratering: A Geologic Process.” He is writing a new book titled “Planetary Surface Processes.”

The BEYOND Center for Fundamental Concepts in Science is a pioneering international research center established in 2006 at ASU. This “cosmic think tank” is specifically dedicated to confronting the big questions raised by advances in fundamental science, and facilitating new research initiatives that transcend traditional subject categories.

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu
http://beyond.asu.edu/

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>