Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Performance Computing in Materials Science: ThyssenKrupp Steel Europe to fund young researchers

25.10.2011
Computer scientists and mathematicians to work with ICAMS

From January 1, 2012 ThyssenKrupp Steel Europe AG will be funding a group of young researchers from Ruhr University Bochum. The computer scientists and mathematicians will carry out research jointly with the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) over a period of six years. The goal is to implement the materials models and simulations developed by ICAMS as efficiently as possible on high-performance computing systems. ThyssenKrupp Steel Europe is providing funds of 1.2 million euros for this work.

Developing materials on the computer

Before a material is put to use in industry, developers test its functions and response. In the future, this will be done increasingly with the aid of efficient computer simulations. Materials scientists, physicists, chemists and engineers at ICAMS are developing models for this. Put simply, they build theoretical new materials from individual atoms and simulate how these materials would behave during processing and use. For example, they examine the correlations between the strength of an automobile component and the chemical bonds between the individual iron atoms it is made of. Such multi-scale models place immense demands on computers and algorithms.

Methods for high-performance computers

Computer simulation and modeling of materials are regarded as key future technologies. To increase speed and efficiency, ICAMS intends to also use high-performance computer systems in the future. The “High Performance Computing in Materials Science” group to be funded by ThyssenKrupp, comprising one post-doctoral researcher and several research assistants, will investigate methods to enable materials to be developed and tested on high-performance systems. The ability to model materials on the computer and reliably predict their behavior in the real world will reduce the need for time- and cost-consuming trials and allow new materials to be brought to market more quickly.

Contact

Ruhr University Bochum, Prof. Dr. Alexander Hartmaier,
Managing Director of ICAMS, Tel. +49 234 32 29314, alexander.hartmaier@rub.de
ThyssenKrupp Business Services, Bernd Overmaat, Tel. +49 201 844 545185, bernd.overmaat@thyssekrupp.com

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>