Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High Performance Computing in Materials Science: ThyssenKrupp Steel Europe to fund young researchers

Computer scientists and mathematicians to work with ICAMS

From January 1, 2012 ThyssenKrupp Steel Europe AG will be funding a group of young researchers from Ruhr University Bochum. The computer scientists and mathematicians will carry out research jointly with the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS) over a period of six years. The goal is to implement the materials models and simulations developed by ICAMS as efficiently as possible on high-performance computing systems. ThyssenKrupp Steel Europe is providing funds of 1.2 million euros for this work.

Developing materials on the computer

Before a material is put to use in industry, developers test its functions and response. In the future, this will be done increasingly with the aid of efficient computer simulations. Materials scientists, physicists, chemists and engineers at ICAMS are developing models for this. Put simply, they build theoretical new materials from individual atoms and simulate how these materials would behave during processing and use. For example, they examine the correlations between the strength of an automobile component and the chemical bonds between the individual iron atoms it is made of. Such multi-scale models place immense demands on computers and algorithms.

Methods for high-performance computers

Computer simulation and modeling of materials are regarded as key future technologies. To increase speed and efficiency, ICAMS intends to also use high-performance computer systems in the future. The “High Performance Computing in Materials Science” group to be funded by ThyssenKrupp, comprising one post-doctoral researcher and several research assistants, will investigate methods to enable materials to be developed and tested on high-performance systems. The ability to model materials on the computer and reliably predict their behavior in the real world will reduce the need for time- and cost-consuming trials and allow new materials to be brought to market more quickly.


Ruhr University Bochum, Prof. Dr. Alexander Hartmaier,
Managing Director of ICAMS, Tel. +49 234 32 29314,
ThyssenKrupp Business Services, Bernd Overmaat, Tel. +49 201 844 545185,

Dr. Josef König | idw
Further information:

More articles from Awards Funding:

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Emmy Noether junior research group investigates new magnetic structures for spintronics applications
11.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>