Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heraeus Innovation Awards 2011: Revolutionary temperature measurement with optical fibers named top innovation

16.11.2011
Best Process Innovation: Efficient method for producing quartz glass tubes for silicon wafers

At the ninth annual Heraeus Innovation Awards, presented in Hanau in mid-November, first prizes were awarded to a new temperature measurement device for the aluminum industry and an efficient process for manufacturing large quartz glass tubes for silicon wafers.


Heraeus Innovation Awards 2011 (from left): Jan Rinnert (Vice Chairman of the Heraeus Holding Board of Management), Dr. Tanja Eckardt (Heraeus Innovation Management), Michael Hahn (Best Process Innovation), Nicole Gübler (3rd place Product), Jan Cuypers (Best Product Innovation), Dr. Frank Heinricht (Chairman of the Heraeus Holding Board of Management), Dr. Stephan Kirchmeyer (2nd place Product), Dr. Wulf Brämer (Heraeus Innovation Management)

The winner of the product innovation award was Jan Cuypers, a Developer in the sensors business group (Heraeus Electro-Nite), who revolutionized measurement technology with FiberLance™, which directly and precisely measures molten media temperatures in industrial furnaces used for aluminum manufacturing. Quartz glass fibers connected to light detecting sensors are used for temperature measurement instead of industry-standard thermocouples and pyrometers. Michael Hahn, Production Manager at Heraeus Quarzglas, won the award for process innovation thanks to a lowcost, flexible, globally standardized manufacturing process for largediameter quartz glass tubes. These tubes are stable at high temperatures in process chambers and are used in the production of silicon wafers (300- mm wafer technology) for microchips and to manufacture solar cells.

The runner-up in product innovation was Dr. Stephan Kirchmeyer of Heraeus Precious Metals, who succeeded in creating the first invisible electrical functional coatings on flexible touch screens, for example for smartphones, with an innovative combination of conductive polymers (Clevios) and recently developed etching technology. Nicole Gübler, a Developer at Heraeus Materials Technology, took third place in product innovations with a ceramic protective layer for sealing platinum components in the glass industry.

The Innovation Award has recognized excellence since 2003

The prizewinners were honored by Dr. Frank Heinricht, Chairman of the Heraeus Holding Board of Management, and Jan Rinnert, Vice Chairman of the Heraeus Holding Board of Management, at a ceremony in Hanau. "Heraeus has been successfully writing industrial history for 160 years, with both product and process innovations. There are people behind these innovations: our colleagues in research, development, application technology, and engineering. Your innovations are essential to our success," said Dr. Frank Heinricht, thanking the winners.

The Heraeus Innovation Award was launched in 2003. All Heraeus researchers and developers worldwide are eligible to participate. More than 190 product innovations have been submitted since 2003, and a total of 29 products and processes have been honored. This year, 21 projects were in the running. "Our Innovation Awards recognize top performance that contributes to the company’s success and have a motivating effect. The developers can be very proud of their innovations," emphasized Dr. Tanja Eckardt, Head of Innovation Management at Heraeus.

Best Product Innovation: Revolutionary temperature measurement – Glass fibers conquer the aluminum bath

Aluminum is favored the world over as a light metal by the automotive, aircraft, and packaging industries. Precise temperature control is essential to its manufacture. Fast, accurate temperature measurement of the aluminum bath (electrolysis), means a more energy efficient manufacturing process. Heraeus Electro-Nite Developer Jan Cuypers and his team have come up with a true innovation in measurement technology. Instead of utilizing industry-standard thermocouples, the sensor experts offer temperature measurement with optical fibers.

FiberLance™ was developed to directly and precisely measure bath temperatures in industrial furnaces for primary aluminum manufacturing. The measurement system uses new technology: an optical fiber connected to a light detecting sensor. The quartz glass optical fiber is consumed during measurement, but since it is supplied in 100 m lengths on a plastic drum, companies can perform up to 10,000 bath temperature measurements without recalibrating the device. The new measurement technology is enabling the sensor specialists at Heraeus to enter new territory. "Optical fibers are new for us, but expanding into this area is a logical complement to our temperature sensor products for the steel industry. We collaborated with a British research institute, and also internally with the specialty fibers group at Heraeus Quarzglas," said Jan Cuypers, enthusiastic about the award.

Best Process Innovation: A cost-effective process for manufacturing large-diameter quartz glass tubes for the semiconductor industry

The ultrapure high-tech material quartz glass has become indispensable in the production of optical fibers for the telecommunications industry, semiconductors, and solar cells for photovoltaics. Microchips are made from silicon wafers with a diameter of 300 millimeters. Large-diameter quartz glass tubes play a key role in manufacturing these wafers. These tubes are stable at high temperatures and are needed for numerous steps performed in process chambers. Thanks to a process innovation by Michael Hahn and an international team of developers, Heraeus Quarzglas can manufacture large-diameter quartz glass tubes for 300-mm wafer technology even more cost effectively and efficiently. "With this unique, flexible process and globally standardized reshaping processes, we have considerably reduced the process steps compared to the previous procedure. This innovation allows us to make even larger tubes for the next generation of silicon wafers, which are based on 450-mm technology," emphasizes Production Manager Michael Hahn.

Product innovation – second place: Clevios – organic electronics for touch screens

Under the brand name Clevios™, Heraeus produces conductive polymers that take the form of bluish dispersions; they form electrical functional coatings and are finding more and more areas of application in our daily lives. Flexible touch screens for smartphones and tablet PCs represent one new, extremely promising use. These intuitive user interfaces are based on innovative microelectronics on thin films with conductive coatings. With a combination of various conductive polymers and a newly developed etching technology, Dr. Stephan Kirchmeyer, Head of the Functional Coatings Business Unit, and a team of developers from the Heraeus Conductive Polymer Division have succeeded in making these functional films on touchscreens completely invisible to the human eye.

Modern touch screen technology requires specific structuring of the surface into conductive and nonconductive areas. The etching technology developed now replaces mechanical structuring by deactivating the conductivity without removing the polymer. This results in conductive structures that are completely invisible to the eye. "This invention is a breakthrough for us in the use of our conductive polymers," according to Stephan Kirchmeyer. "Now no one sees the color differences. Due to these new structuring possibilities, increasing numbers of touch screen manufacturers are interested in our conductive polymers."

Product innovation – third place: innovative platinum protection system lowers cost of manufacturing special glass

Because of their chemical resistance and high melting points, platinum and its alloys are used as a component material in the glass industry during the melting and manufacture of special glass (such as display panels) at high temperatures above 1400°C. The hotter the molten glass, the more efficiently high-quality glass can be refined and produced. The bad news: At the high temperatures used, platinum reacts with oxygen to form platinum oxides and evaporates from the surface of components. The higher the working temperature, the greater the evaporation rate, and the faster the component will be damaged and ultimately destroyed.

Nicole Gübler, Developer at Heraeus Materials Technology, described the challenge: "The customer wanted us to develop a platinum component that could be used at 1650°C for up to 8,000 hours without major boil-off losses. "She and her team developed an innovative ceramic layer that is applied like a second skin to seal the platinum component. This protective covering significantly inhibits the evaporation of platinum as platinum oxide and allows for a working temperature of 1650°C. Components in the worldwide glass industry contain more than 100 tons of platinum. This innovation helps reduce the processing and thus manufacturing costs for special glass while saving valuable resources.

Heraeus, the precious metals and technology Group headquartered in Hanau, Germany, is a global, private company with 160 years of tradition. Our fields of competence include precious metals, materials and technologies; sensors; biomaterials; and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.1 billion and precious metals trading revenues of €17.9 billion, as well as more than 12,900 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

For additional information, please contact:
Dr. Jörg Wetterau
Corporate Communications
Head of Technology Media & Innovation
Heraeus Holding GmbH
Heraeusstraße 12-14
63450 Hanau, Germany
Tel. +49 (0) 6181.35-5706
Fax + 49 (0) 6181.35-4242
E-mail: Joerg.wetterau@heraeus.com

Dr. Jörg Wetterau | Heraeus Holding GmbH
Further information:
http://www.heraeus.com

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>