Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz supports three research projects along the road to application

04.03.2015

The Helmholtz Association is keen on developing pioneering technologies and making them attractive for industry. It is therefore channelling more than €20 million from its Initiative and Networking Fund into helping scientists quickly move their projects from research to application. Since its launch in 2011, the Validation Fund has financed a total of 21 projects.

Independent assessors have recently recommended to financially supporting three more projects: a continuous production process for more cost efficient manufacturing of composite parts, primarily for the automotive sector; a new therapeutic approach for treating hepatitis B; and a highly innovative treatment for type 1 and type 2 diabetes.
The Helmholtz Association believes these three projects show huge potential for achieving successful commercial application and making a significant contribution to society. All together, the three research projects are to receive a total of some €2.6 million in funding.

Funding to bring research to market
It can sometimes take years for scientific findings to become ready for market. The validation phase in particular can be both exciting and nerve-wracking for researchers. This is where they find out whether their product is ready for market or not. “The Validation Fund provides scientists working at Helmholtz centres with support in the form of advice and financing during this initial phase. The funding allows us to push application-oriented research findings far enough for them to achieve an increase in value and become commercially viable,” says Rolf Zettl, managing director of the Helmholtz Association. He explains that there are various ways of proving that a project is ready for market, such as conducting tests to demonstrate applicability, scaling up the production process, or delivering results from pre-clinical trials. “The Helmholtz Validation Fund is an important instrument for enabling the transfer of highly relevant technologies”, says Zettl.

Three promising projects

COPRO2 – Continuous production of complex preform moulds
In the COPRO2 project, Christian Hühne and his team from the German Aerospace Center (DLR) aim to design and produce more cost-efficient and higher-quality moulds for fibre-reinforced plastic composites (FRP) to be used in the automotive and industrial sector. With this new technology, mould preforms for the supporting structures in car and commercial vehicle bodywork (roof bows, side-member and cross-members on car floors) will be manufactured from dry fibre semi-finished products. COPRO2 offers a fully automated forming process that can be integrated into existing FRP production processes, replacing partly automated or less-efficient processes. Customers include part manufacturers as well as suppliers for the automotive industry as well as for industrial applications. The research team guarantees that the COPRO2 process will achieve a 35-percent reduction in manufacturing costs compared to conventional methods. Moreover, COPRO2 is improving the quality of the parts, and can be directly implemented into serial production – an advantage that sets it apart from competitors.

New hepatitis B therapy with bispecific antibodies
The validation project, being undertaken by Ulrike Protzer and Felix Bohne of Helmholtz Zentrum München together with Frank Momburg of the German Cancer Research Center, focuses on a new curative therapy concept for patients with chronic hepatitis B. It could also be applied to liver cell carcinoma caused by the hepatitis B virus (HBV). The new therapy approach involves a combination of two bispecific antibodies, which are intended to bind to the harmful hepatitis B virus as well as to activate the beneficial T-cells. Currently, the gold standard treatment for hepatitis B only hinders the reproduction of the virus rather than eradicating it. The bispecific antibody therapy, however, is based on a curative treatment of the virus infection in the liver. This approach is particularly interesting for pharmaceutical companies, since it could be relevant for other diseases caused by viruses. Following the successful pre-clinical validation, it is expected that pharmaceutical companies will license and further develop the bispecific antibodies. Medical demand is extremely high: up to 350 million people worldwide suffer from chronic hepatitis B. About 600,000 of those affected die every year from a HBV infection.

DigEST – New therapy for treating diabetes
Stephan Herzig’s research group at the Institute for Diabetes and Cancer at Helmholtz Zentrum München is planning to investigate the effectiveness of a new diabetes therapy in cooperation with the German Cancer Research Center. The approach acts to eliminate a particular element in the liver, which in turn improves the sensitivity of the liver and other organs to insulin. The target molecule plays a key role in regulating the insulin signal transduction pathway, and therefore offers a new starting point in diabetes therapy. Above all, the approach could offer a long-awaited alternative therapy for patients who are unresponsive to standard therapies, or whose treatment is restricted due to kidney damage caused by diabetes. Initial studies indicate that the deactivation of the protein identified by the research team can prevent abnormally high blood glucose levels, glucose intolerance, and insulin resistance as well as significantly improve existing diabetes conditions. The validation process will investigate the basic interaction between the active component and the organism as well as the therapy’s safety and effectiveness. Following further clinical development with pharmaceutical partners, a new active component for treating type 1 and type 2 diabetes could be brought to the market. That would mean a breakthrough for the treatment of diabetes: with an ever-growing number of more than 380 million people suffering from diabetes, it is one of the most-widespread diseases in the world.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Matter; and Aeronautics, Space and Transport. With almost 37,000 employees in 18 research centres and an annual budget of approximately €3.99 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Janine Tychsen
Deputy Head Communications and Media Relations
Tel.: +49 (0)30 206 329-24
janine.tychsen@helmholtz.de

Jörn Krupa
Head of Technology Transfer
Tel.: +49 (0)30 206 329-72
joern.krupa@helmholtz.de

Communications and Media Relations
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

http://www.helmholtz.de

http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>