Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz supports three research projects along the road to application

04.03.2015

The Helmholtz Association is keen on developing pioneering technologies and making them attractive for industry. It is therefore channelling more than €20 million from its Initiative and Networking Fund into helping scientists quickly move their projects from research to application. Since its launch in 2011, the Validation Fund has financed a total of 21 projects.

Independent assessors have recently recommended to financially supporting three more projects: a continuous production process for more cost efficient manufacturing of composite parts, primarily for the automotive sector; a new therapeutic approach for treating hepatitis B; and a highly innovative treatment for type 1 and type 2 diabetes.
The Helmholtz Association believes these three projects show huge potential for achieving successful commercial application and making a significant contribution to society. All together, the three research projects are to receive a total of some €2.6 million in funding.

Funding to bring research to market
It can sometimes take years for scientific findings to become ready for market. The validation phase in particular can be both exciting and nerve-wracking for researchers. This is where they find out whether their product is ready for market or not. “The Validation Fund provides scientists working at Helmholtz centres with support in the form of advice and financing during this initial phase. The funding allows us to push application-oriented research findings far enough for them to achieve an increase in value and become commercially viable,” says Rolf Zettl, managing director of the Helmholtz Association. He explains that there are various ways of proving that a project is ready for market, such as conducting tests to demonstrate applicability, scaling up the production process, or delivering results from pre-clinical trials. “The Helmholtz Validation Fund is an important instrument for enabling the transfer of highly relevant technologies”, says Zettl.

Three promising projects

COPRO2 – Continuous production of complex preform moulds
In the COPRO2 project, Christian Hühne and his team from the German Aerospace Center (DLR) aim to design and produce more cost-efficient and higher-quality moulds for fibre-reinforced plastic composites (FRP) to be used in the automotive and industrial sector. With this new technology, mould preforms for the supporting structures in car and commercial vehicle bodywork (roof bows, side-member and cross-members on car floors) will be manufactured from dry fibre semi-finished products. COPRO2 offers a fully automated forming process that can be integrated into existing FRP production processes, replacing partly automated or less-efficient processes. Customers include part manufacturers as well as suppliers for the automotive industry as well as for industrial applications. The research team guarantees that the COPRO2 process will achieve a 35-percent reduction in manufacturing costs compared to conventional methods. Moreover, COPRO2 is improving the quality of the parts, and can be directly implemented into serial production – an advantage that sets it apart from competitors.

New hepatitis B therapy with bispecific antibodies
The validation project, being undertaken by Ulrike Protzer and Felix Bohne of Helmholtz Zentrum München together with Frank Momburg of the German Cancer Research Center, focuses on a new curative therapy concept for patients with chronic hepatitis B. It could also be applied to liver cell carcinoma caused by the hepatitis B virus (HBV). The new therapy approach involves a combination of two bispecific antibodies, which are intended to bind to the harmful hepatitis B virus as well as to activate the beneficial T-cells. Currently, the gold standard treatment for hepatitis B only hinders the reproduction of the virus rather than eradicating it. The bispecific antibody therapy, however, is based on a curative treatment of the virus infection in the liver. This approach is particularly interesting for pharmaceutical companies, since it could be relevant for other diseases caused by viruses. Following the successful pre-clinical validation, it is expected that pharmaceutical companies will license and further develop the bispecific antibodies. Medical demand is extremely high: up to 350 million people worldwide suffer from chronic hepatitis B. About 600,000 of those affected die every year from a HBV infection.

DigEST – New therapy for treating diabetes
Stephan Herzig’s research group at the Institute for Diabetes and Cancer at Helmholtz Zentrum München is planning to investigate the effectiveness of a new diabetes therapy in cooperation with the German Cancer Research Center. The approach acts to eliminate a particular element in the liver, which in turn improves the sensitivity of the liver and other organs to insulin. The target molecule plays a key role in regulating the insulin signal transduction pathway, and therefore offers a new starting point in diabetes therapy. Above all, the approach could offer a long-awaited alternative therapy for patients who are unresponsive to standard therapies, or whose treatment is restricted due to kidney damage caused by diabetes. Initial studies indicate that the deactivation of the protein identified by the research team can prevent abnormally high blood glucose levels, glucose intolerance, and insulin resistance as well as significantly improve existing diabetes conditions. The validation process will investigate the basic interaction between the active component and the organism as well as the therapy’s safety and effectiveness. Following further clinical development with pharmaceutical partners, a new active component for treating type 1 and type 2 diabetes could be brought to the market. That would mean a breakthrough for the treatment of diabetes: with an ever-growing number of more than 380 million people suffering from diabetes, it is one of the most-widespread diseases in the world.

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Matter; and Aeronautics, Space and Transport. With almost 37,000 employees in 18 research centres and an annual budget of approximately €3.99 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the Media:

Janine Tychsen
Deputy Head Communications and Media Relations
Tel.: +49 (0)30 206 329-24
janine.tychsen@helmholtz.de

Jörn Krupa
Head of Technology Transfer
Tel.: +49 (0)30 206 329-72
joern.krupa@helmholtz.de

Communications and Media Relations
Office Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

http://www.helmholtz.de

http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>