Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helmholtz Association facilitates new spin-offs

01.09.2014

The Helmholtz Association is providing up to €130,000 of funding for each of four new spin-off proposals by Helmholtz researchers. This brings the total number of Helmholtz centre spin-offs funded by the Association through its Initiative and Networking Fund to 86 since 2005.

The Helmholtz Enterprise funding programme supports spin-offs during the critical start-up phase, helping research findings to be applied rapidly for the benefit of society and the economy.

Enabling research findings to be rapidly translated into practical applications is one of the Helmholtz Association’s primary aims, according to Rolf Zettl, Managing Director of the Association.

“For achieving this goal, we support scientists from our centres who aim to take their ideas and become entrepreneurs, above all in the difficult early stages”, he says, adding that the Helmholtz Enterprise programme is also a great help in other aspects, such as covering the staff shortages which arise at the individual Helmholtz Centres when spin-offs are set up.

“We also give our scientists who are founding a spin-off the necessary resources to enable them to develop their business plan, for example.” The support given also includes the provision of external management experts and intensive consultancy provided by the Helmholtz Centre transfer points.

The four new projects to be funded are:
1.) Commercializing DESY detectors – commercial distribution of technologically advanced X-ray cameras
This spin-off project opens up new opportunities for commercialising LAMBDA, an x-ray detector developed in the DESY accelerator centre. LAMBDA is the first detector capable of producing x-ray images in colour, providing valuable additional information about the subject under examination. The detector also operates at high speed to create very detailed images in high resolution, delivering a greatly improved data set in a very short space of time compared to standard detectors. This is particularly advantageous for large-scale research apparatus, as it enables several examinations to be carried out at the same time. The aim is to make the detector available for other synchrotrons and x-ray sources in the field of high-end experiments through collaboration with the planned spin-off X-Spectrum GmbH, which will take on the commercial distribution of the detector including installation, initial operation and maintenance.
Contact: Prof. Dr. Heinz Graafsma
Tel.: +49 (0)40 8998 1678
E-mail: heinz.graafsma@desy.de
Deutsches Elektronen-Synchrotron (DESY)

2.) ELiSE – Marine plankton provide models for light structure engineering
An interdisciplinary team of founders from the Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research (AWI) is setting up ELiSE GmbH as a spin-off. In a first step, the business model was developed with the help of start-up funding and the new company is now ready to be launched. The basis for this spin-off is the bionic process known as ELiSE (Evolutionary Light Structure Engineering) developed at the centre, whereby light structure engineering is improved by the systematic use of a variety of naturally pre-optimized light-weight structures modelled on marine plankton. This procedure differs from other optimization methods in the huge range of structures shown by the natural models, making it capable of generating several significantly different variant solutions in each case. The ELiSE development process has already been applied successfully in a range of industrial projects. The main target industries are the automotive industry, the aerospace industry, mechanical engineering, medical technology and consumer goods.
Contact: Dr Christian Hamm
Tel.: +49 (0)471 4831 1832
E-mail: christian.hamm@awi.de
Alfred Wegener Institute Helmholtz-Center for Polar and Marine Research (AWI)

3.) Sunbelt Energy Technologies – solar tower system with integrated energy storage system for the production of electricity and heat for industrial high-temperature processes
The solar tower system under development is designed for the production of electricity and heat for high-temperature industrial processes in countries which get a lot of sun. The system was developed at the German Aerospace Center (DLR), using its expertise in solar receivers and related system technologies. The concentrated solar power is directly absorbed by nearly black ceramic particles in the receiver. The particles are used in a cycle both to absorb the energy and to store it. The system delivers hot air with an integrated storage system to compensate for fluctuations in solar radiation and can even provide energy at night. The system’s unique selling point is the receiver’s basic components. The proposed spin-off will take over the commercial exploitation of the technology as soon as the system’s validation at the solar tower in Jülich has been successfully completed.
Contact: Lars Amsbeck
Tel.: +49 (0)711 / 6862-306
Email: lars.amsbeck@dlr.de
German Aerospace Center (DLR)

4.) CLASS 5 PHOTONICS – Developing and marketing an innovative high-performance femto-second laser
The planned spin-off CLASS 5 PHOTONICS of the Deutsches Elektronen-Synchrotron (DESY) and the GSI Helmholtz Centre for Heavy Ion Research will be located on the DESY campus as a high-tech company. It will develop and market OPCPA laser amplifiers with record average power and pulse duration. The spin-off will provide commercial solutions for femto-second lasers with innovative amplifier technology for the first time. The laser provides new levels in average power and short pulse duration, achieving a ten-fold increase in process speed. It also enables the miniaturisation of high-brilliance x-ray sources.
Contact: Dr. Robert Riedel
Tel.: +49 (0)40 8998 1952
E-mail: robert.riedel@desy.de
Helmholtz Institute Jena

The Helmholtz Association contributes to solving major challenges facing society, science and the economy with top scientific achievements in six research fields: Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; and Aeronautics, Space and Transport. With almost 36,000 employees in 18 research centres and an annual budget of approximately €3.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Contacts for the media:

Janine Tychsen
Stellvertretende Leiterin Kommunikation und Medien
Tel.: 030 206 329-24
janine.tychsen@helmholtz.de

Dr.-Ing. Jörn Krupa
Stabsstelle Technologietransfer
Tel.: 030 206 329-72
joern.krupa@helmholtz.de

Kommunikation und Medien
Büro Berlin
Anna-Louisa-Karsch-Str. 2
10178 Berlin

Weitere Informationen:

http://www.helmholtz.de
http://www.helmholtz.de/socialmedia

Jan-Martin Wiarda | Helmholtz-Gemeinschaft

Further reports about: DESY Energy Helmholtz Marine detector develop electricity heat structures

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>