Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg University researcher awarded Animal Welfare Prize of the German Research Foundation

19.03.2014

New methods for vascular research reduce number of experimental animals / Human umbilical cord cells mimic vessel walls

Professor Thomas Korff of the Department of Physiology and Pathophysiology at Heidelberg University, Germany, was awarded the German Research Foundation (DFG)’s Ursula M. Händel Animal Welfare Prize on March 20, 2014, at a ceremony in Berlin.


Professor Thomas Korff developed a model system for human blood vessels in the petri dish.

Photo: Heidelberg University Hospital

The physiologist investigates the formation and remodeling of blood vessels and has developed methods that minimize the distress experienced by animals and reduce the number of test animals. In certain areas, animal experiments can be replaced completely.

Professor Korff plans to use the prize money in the amount of 100,000 euros to refine his methods and standardize them so that they can be introduced and applied in other research laboratories without a great deal of effort.

Blood vessels in the petri dish

The award winner and his group study the processes and mechanisms in blood vessels that underlie normal development as well as pathological remodeling processes associated with, e.g. atherosclerosis or varicose veins. In order to use human cells for his experiments to the greatest extent possible, Korff has developed special culture methods.

To this end, he cultivates spherical cellular aggregates from cells that are isolated from the blood vessels of human umbilical cord after birth. These cell masses mimic two layers of the vessel wall. 

This model system for human blood vessels is not only well suited for basic research, but is now also being used in industrial applications. Scientists from Beiersdorf AG in Hamburg, Germany, are using the model system to test the protective effect of cosmetic substances on microscopic skin vessels. “Since we categorically excludeanimal testing, we use these kinds of realistic methods with human cells, which are especially significant for us,” said Dr. GittaNeufang, Head of Medical Management at Beiersdorf AG.

Test mice affected as little as possible

“However, cell cultures reach their limits for applications beyond cosmetics, for instance, if we want to find out how and why vessels undergo pathological changes,” Korff pointed out. In this case, it is not possible to avoid direct manipulations on animals, he clarified. “However, we have developed new surgical techniques that are much less stressful for the test animal than other proceduresused in vascular research.”

The new methods are easy to perform and mean less distress for the animals. “The animals behave normally and the success rate of the surgical procedures is higher. We need fewer animals for reliable results, which also reduces the costs,” he added.

For experiments on the living organism, the team often uses the ear of the mouse, in which the blood vessels are already clearly visible with the naked eye. The mouse ear is also easily accessible for many imaging techniquesand is suitable as a model for investigating many research questions. Without a single incision, for instance, a vein can be tied off in order to raise blood pressure in the afferent vessels.

In so doing, the formation of varicose veins can be simulated and their development observed over a period of several days. With this model, Korff investigates what signal pathways and molecules promote the pathological enlargement of the veins and whether certain substances can influence it. These kinds of studies are essential for identifying approaches for future therapeutic treatment.

In another project, the research group uses the mouse ear to investigate how tumors influence existing vessels or stimulate the formation of new vessels and, in so doing, can ensure their own blood supply. “Processes that are so complex can only be studied in live animals,” Korff explained.

Literature:
Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Demicheva E, Hecker M, Korff T. Circ Res. 2008 Aug 29;103(5):477-84.

Feldner A, Otto H, Rewerk S, Hecker M, Korff T. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 Oct;25(10):3613-21.

Navid F, Kolbe L, Stäb F, Korff T, Neufang G. UV-radiation induces the release of angiopoietin-2 from dermal microvascular endothelial cells. ExpDermatol. 2012 Feb;21(2):147-53.

More information is available on the Web:
Working group Professor Thomas Korff: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Gruppe-Korff.110926.0.htm...
Ursula M. Händel Animal Welfare Prize: www.dfg.de/haendel-preis
DFG press release: www.dfg.de/service/presse/pressemitteilungen/2014/pressemitteilung_nr_04/index.html

Contact for journalists:
Dr. Gerd König
Institute of Physiology and Pathophysiology
Division of Cardiovascular Physiology
Heidelberg University
Tel. +49 6221 54-4067 or +49 1525 3502007
E-mail: gerd.koenig@physiologie.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching

Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 118,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 2,200 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht “Next Generation of Science Journalists” Award: Applications now open
21.05.2015 | World Health Summit

nachricht Connecting science with society - EU boost for polar science
19.05.2015 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>