Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heidelberg University researcher awarded Animal Welfare Prize of the German Research Foundation


New methods for vascular research reduce number of experimental animals / Human umbilical cord cells mimic vessel walls

Professor Thomas Korff of the Department of Physiology and Pathophysiology at Heidelberg University, Germany, was awarded the German Research Foundation (DFG)’s Ursula M. Händel Animal Welfare Prize on March 20, 2014, at a ceremony in Berlin.

Professor Thomas Korff developed a model system for human blood vessels in the petri dish.

Photo: Heidelberg University Hospital

The physiologist investigates the formation and remodeling of blood vessels and has developed methods that minimize the distress experienced by animals and reduce the number of test animals. In certain areas, animal experiments can be replaced completely.

Professor Korff plans to use the prize money in the amount of 100,000 euros to refine his methods and standardize them so that they can be introduced and applied in other research laboratories without a great deal of effort.

Blood vessels in the petri dish

The award winner and his group study the processes and mechanisms in blood vessels that underlie normal development as well as pathological remodeling processes associated with, e.g. atherosclerosis or varicose veins. In order to use human cells for his experiments to the greatest extent possible, Korff has developed special culture methods.

To this end, he cultivates spherical cellular aggregates from cells that are isolated from the blood vessels of human umbilical cord after birth. These cell masses mimic two layers of the vessel wall. 

This model system for human blood vessels is not only well suited for basic research, but is now also being used in industrial applications. Scientists from Beiersdorf AG in Hamburg, Germany, are using the model system to test the protective effect of cosmetic substances on microscopic skin vessels. “Since we categorically excludeanimal testing, we use these kinds of realistic methods with human cells, which are especially significant for us,” said Dr. GittaNeufang, Head of Medical Management at Beiersdorf AG.

Test mice affected as little as possible

“However, cell cultures reach their limits for applications beyond cosmetics, for instance, if we want to find out how and why vessels undergo pathological changes,” Korff pointed out. In this case, it is not possible to avoid direct manipulations on animals, he clarified. “However, we have developed new surgical techniques that are much less stressful for the test animal than other proceduresused in vascular research.”

The new methods are easy to perform and mean less distress for the animals. “The animals behave normally and the success rate of the surgical procedures is higher. We need fewer animals for reliable results, which also reduces the costs,” he added.

For experiments on the living organism, the team often uses the ear of the mouse, in which the blood vessels are already clearly visible with the naked eye. The mouse ear is also easily accessible for many imaging techniquesand is suitable as a model for investigating many research questions. Without a single incision, for instance, a vein can be tied off in order to raise blood pressure in the afferent vessels.

In so doing, the formation of varicose veins can be simulated and their development observed over a period of several days. With this model, Korff investigates what signal pathways and molecules promote the pathological enlargement of the veins and whether certain substances can influence it. These kinds of studies are essential for identifying approaches for future therapeutic treatment.

In another project, the research group uses the mouse ear to investigate how tumors influence existing vessels or stimulate the formation of new vessels and, in so doing, can ensure their own blood supply. “Processes that are so complex can only be studied in live animals,” Korff explained.

Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Demicheva E, Hecker M, Korff T. Circ Res. 2008 Aug 29;103(5):477-84.

Feldner A, Otto H, Rewerk S, Hecker M, Korff T. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 Oct;25(10):3613-21.

Navid F, Kolbe L, Stäb F, Korff T, Neufang G. UV-radiation induces the release of angiopoietin-2 from dermal microvascular endothelial cells. ExpDermatol. 2012 Feb;21(2):147-53.

More information is available on the Web:
Working group Professor Thomas Korff:
Ursula M. Händel Animal Welfare Prize:
DFG press release:

Contact for journalists:
Dr. Gerd König
Institute of Physiology and Pathophysiology
Division of Cardiovascular Physiology
Heidelberg University
Tel. +49 6221 54-4067 or +49 1525 3502007

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching

Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 118,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 2,200 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44

Selected english press releases online:

Dr. Annette Tuffs | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>