Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heidelberg University researcher awarded Animal Welfare Prize of the German Research Foundation

19.03.2014

New methods for vascular research reduce number of experimental animals / Human umbilical cord cells mimic vessel walls

Professor Thomas Korff of the Department of Physiology and Pathophysiology at Heidelberg University, Germany, was awarded the German Research Foundation (DFG)’s Ursula M. Händel Animal Welfare Prize on March 20, 2014, at a ceremony in Berlin.


Professor Thomas Korff developed a model system for human blood vessels in the petri dish.

Photo: Heidelberg University Hospital

The physiologist investigates the formation and remodeling of blood vessels and has developed methods that minimize the distress experienced by animals and reduce the number of test animals. In certain areas, animal experiments can be replaced completely.

Professor Korff plans to use the prize money in the amount of 100,000 euros to refine his methods and standardize them so that they can be introduced and applied in other research laboratories without a great deal of effort.

Blood vessels in the petri dish

The award winner and his group study the processes and mechanisms in blood vessels that underlie normal development as well as pathological remodeling processes associated with, e.g. atherosclerosis or varicose veins. In order to use human cells for his experiments to the greatest extent possible, Korff has developed special culture methods.

To this end, he cultivates spherical cellular aggregates from cells that are isolated from the blood vessels of human umbilical cord after birth. These cell masses mimic two layers of the vessel wall. 

This model system for human blood vessels is not only well suited for basic research, but is now also being used in industrial applications. Scientists from Beiersdorf AG in Hamburg, Germany, are using the model system to test the protective effect of cosmetic substances on microscopic skin vessels. “Since we categorically excludeanimal testing, we use these kinds of realistic methods with human cells, which are especially significant for us,” said Dr. GittaNeufang, Head of Medical Management at Beiersdorf AG.

Test mice affected as little as possible

“However, cell cultures reach their limits for applications beyond cosmetics, for instance, if we want to find out how and why vessels undergo pathological changes,” Korff pointed out. In this case, it is not possible to avoid direct manipulations on animals, he clarified. “However, we have developed new surgical techniques that are much less stressful for the test animal than other proceduresused in vascular research.”

The new methods are easy to perform and mean less distress for the animals. “The animals behave normally and the success rate of the surgical procedures is higher. We need fewer animals for reliable results, which also reduces the costs,” he added.

For experiments on the living organism, the team often uses the ear of the mouse, in which the blood vessels are already clearly visible with the naked eye. The mouse ear is also easily accessible for many imaging techniquesand is suitable as a model for investigating many research questions. Without a single incision, for instance, a vein can be tied off in order to raise blood pressure in the afferent vessels.

In so doing, the formation of varicose veins can be simulated and their development observed over a period of several days. With this model, Korff investigates what signal pathways and molecules promote the pathological enlargement of the veins and whether certain substances can influence it. These kinds of studies are essential for identifying approaches for future therapeutic treatment.

In another project, the research group uses the mouse ear to investigate how tumors influence existing vessels or stimulate the formation of new vessels and, in so doing, can ensure their own blood supply. “Processes that are so complex can only be studied in live animals,” Korff explained.

Literature:
Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Demicheva E, Hecker M, Korff T. Circ Res. 2008 Aug 29;103(5):477-84.

Feldner A, Otto H, Rewerk S, Hecker M, Korff T. Experimental hypertension triggers varicosis-like maladaptive venous remodeling through activator protein-1. FASEB J. 2011 Oct;25(10):3613-21.

Navid F, Kolbe L, Stäb F, Korff T, Neufang G. UV-radiation induces the release of angiopoietin-2 from dermal microvascular endothelial cells. ExpDermatol. 2012 Feb;21(2):147-53.

More information is available on the Web:
Working group Professor Thomas Korff: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Gruppe-Korff.110926.0.htm...
Ursula M. Händel Animal Welfare Prize: www.dfg.de/haendel-preis
DFG press release: www.dfg.de/service/presse/pressemitteilungen/2014/pressemitteilung_nr_04/index.html

Contact for journalists:
Dr. Gerd König
Institute of Physiology and Pathophysiology
Division of Cardiovascular Physiology
Heidelberg University
Tel. +49 6221 54-4067 or +49 1525 3502007
E-mail: gerd.koenig@physiologie.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching

Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 118,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 2,200 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht New DFG Research Group: “What Does a Neutrino Weigh?”
14.04.2015 | Ruprecht-Karls-Universität Heidelberg

nachricht EuropeanPioneers funds start-ups with over 2 Million Euros for the second round
01.04.2015 | Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>