Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hansen Family Award 2011 goes to Stefan Hell

18.03.2011
The researcher at the Max Planck Institute for Biophysical Chemistry in Göttingen and the German Cancer Research Center in Heidelberg was awarded the prize for his breakthroughs in the field of microscopy. The award from the “Bayer Science and Education Foundation” is one of the most prestigious scientific prizes in Germany endowed with 75,000 Euro.

“The work of Professor Hell is an impressive testimony of the high standard of scientific research in Germany. Until recently it was unthinkable what his work has now enabled in the field of light microscopy: an insight into living cells and tissues,” said Dr. Marijn Dekkers, Head of the Executive Board of Bayer AG, at the official presentation of the Hansen Family Award 2011 on 15 March 2011 in Berlin.

With his initially very unusual ideas, the winner Prof. Dr. Stefan W. Hell changed textbook knowledge. “Professor Hell had a strong belief that he could break the diffraction limit in light microscopes discovered by Abbe. With the help of physics, he has overcome the apparently insurmountable barrier to achieve something which is very helpful in medicine and biology,” said Dr. Wolfgang Plischke, Bayer’s Head of Research, explaining the decision of the Board of Trustees.

The findings of the Göttingen physicist have revolutionized light microscopy and led to a new class of microscopes, which can look significantly deeper into the molecular scale of life. The Stimulated Emission Depletion (STED) microscopy and related methods, invented and developed by Hell, allow an up to ten times greater detailed observation in living cells and make structures visible that are much smaller than 200 nanometers. With this, one can separately observe fluorescence-tagged protein complexes of the size of 20 to 50 nanometers, structures that are about 1000 times smaller than the diameter of a human hair. With this level of resolution achieved by Hell, “the dynamics of intercellular events is possible to observe – and will probably show us something new like the light microscope did four hundred years ago,” said Prof. Dr. Ernst-Ludwig Winnacker, Secretary General of the Human Frontier Science Program Organization and Chairman of the Board of Trustees. The awardee stressed in his speech, “It gives me and my co-workers great pleasure to see that this breakthrough in the field of applied physics has found its way into biology and medicine and, in the end, will benefit all.”

Personal data:
Stefan W. Hell (born in 1962) received his doctorate in physics from the University of Heidelberg in 1990, followed by a research stay at the European Molecular Biology Laboratory in Heidelberg. From 1993 to 1996, he worked as a senior researcher at the University of Turku, Finland, where he developed the principle of STED microscopy. In 1996, he moved to the Max Planck Institute for Biophysical Chemistry in Göttingen, where he built up his current research group dedicated to sub-diffraction-resolution microscopy. He was appointed a Max Planck Director in 2002 and currently leads the Department of NanoBiophotonics at the Max Planck Institute for Biophysical Chemistry and the Department of Optical Nanoscopy at the German Cancer Research Center. He is an honorary professor of experimental physics at the University of Göttingen and adjunct professor of physics at the University of Heidelberg. Stefan Hell has received numerous national and international awards, including the Prize of the International Commission for Optics (2000), the Carl Zeiss Research Award (2002), the Innovation Award of the German Federal President (2006), the Julius Springer Award for Applied Physics (2007), the Gottfried Wilhelm Leibniz Prize (2008), the Lower Saxony State Award (2008), the Otto Hahn Prize (2009), and the Ernst Hellmut Vits Prize (2010).
Background information on the Hansen Family Award:
The Hansen Family Award honors scientists who have made pioneering research contributions in innovative fields of biology and medicine. It has been presented by the Bayer Science & Education Foundation since 2000 in memory of its endower Professor Kurt Hansen. The former Chairman of the Board of Management and the Supervisory Board of Bayer AG established the award in 1999 out of “gratitude for a fulfilled life as a natural scientist and business manager”. The foundation honors outstanding research achievements every two years with the Hansen Family Award and the alternate year with the Otto Bayer Award, each of which carries a purse of 75,000 Euro.
Contact:
Prof. Dr. Stefan W. Hell, Department of NanoBiophotonics
Max Planck Institute for Biophysical Chemistry
Phone: +49 551 / 201-2500, -2503
Fax: +49 551 / 201-2505
Email: shell@gwdg.de
Dr. Carmen Rotte, Public relations office
Max Planck Institute for Biophysical Chemistry
Phone: +49 551 / 201-1304
Fax: +49 551 / 201-1151
Email: crotte@gwdg.de
Please find the original press release including a high-resolution picture for download following the link at http://www.mpibpc.mpg.de/groups/pr/PR/2011/11_03_en/

Dr. Carmen Rotte | Max-Planck-Institut
Further information:
http://www.mpibpc.mpg.de/groups/hell/
http://www.mpibpc.mpg.de/groups/pr/PR/2011/11_03_en/

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>