Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Photonic Energy Corporation’s Research Partner Wins U.S. Department of Energy Grant Under the SunShot Initiative

22.09.2011
Four-Year Effort to Accelerate Development of Cost-Competitive Solar Technologies

Global Photonic Energy Corporation (“GPEC”), a world leader in the development of Small-Molecule Organic Photovoltaic (SM-OPV™) technology that will enable ultra low-cost solar power generation and exciting new product capabilities, said today that its research partner Dr. Stephen R. Forrest, Vice President for Research at the University of Michigan, has secured a $1.5 million grant from the U.S. Department of Energy’s (DOE) SunShot Initiative. The grant was awarded in the “Transformational PV Science and Technology: Next Generation Photovoltaics II” category. Additional cost-share is being provided by the University of Michigan.

Dr. Forrest’s research program will further advance the development of next generation organic solar cell technology using GPEC’s proprietary small-molecule systems incorporated in a stacked architecture. Dr. Forrest is a sponsored researcher and scientific advisor of Global Photonic Energy Corporation.

This award is a further endorsement of the research that Dr. Forrest conducted under the DOE’s “Transformational PV Science and Technology: Next Generation Photovoltaics I” program awarded over three years and now coming to a close.
In transforming organic photovoltaics into a fully practical energy solution, Dr. Forrest’s new proposal is focused on addressing key commercial factors including high efficiency, high reliability and low-cost, scalable production systems. “This research program could lead to a transformation in the cost structure of solar energy conversion,” Dr. Forrest stated.

The research work will use proprietary small molecule materials in a variety of device structures to achieve significant performance, reliability and low-cost manufacturability that can incorporate, at any time, improved materials as they become available. “The proprietary core materials, device architectures and fabrication approaches are the product of our research program supported by GPEC, the DOE and other government agencies,” Forrest explained. “Small molecules are easy to purify, process and form into multilayer devices that deliver high efficiency and outstanding reliability.”
GPEC works closely with its University of Michigan research team to ensure rapid scaling and prototyping of the most promising technologies developed during the course of this program and the Company’s sponsored research.

GPEC’s SM-OPV™ technology will generate sustainable, clean electricity using lightweight and low-cost solar cells, going far beyond today's heavy, silicon-based cells that remain expensive to produce. GPEC’s SM-OPV™ technology can be applied to virtually any surface using a room-temperature technique similar to spray painting. Production methods of this sort are easily adaptable to batch, continuous and so-called “roll-to-roll” manufacturing processes and hold the promise of dramatically reduced production costs. In addition, the Company’s technology can be deployed to address a variety of exciting application needs including transparent solar windows, power-generating car paint, battery charging smart phone enclosures and solar powered fabric.

About Global Photonic Energy Corporation
Global Photonic Energy Corporation (GPEC) is a world leader in Small-Molecule Organic Photovoltaic (SM-OPV™) technologies, holding more than 425 patents issued and pending. GPEC collaborates with world-class organizations to transform the energy and photovoltaic markets. GPEC has research partnerships with the University of Southern California, the University of Michigan and Princeton University. To learn more, visit www.globalphotonic.com

Phil Allen | Global Photonic
Further information:
http://www.globalphotonic.com

More articles from Awards Funding:

nachricht The quest for the oldest ice on Earth
14.11.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Empa Innovation Award for new flame retardant
09.11.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>