Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Photonic Energy Corporation’s Research Partner Wins U.S. Department of Energy Grant Under the SunShot Initiative

22.09.2011
Four-Year Effort to Accelerate Development of Cost-Competitive Solar Technologies

Global Photonic Energy Corporation (“GPEC”), a world leader in the development of Small-Molecule Organic Photovoltaic (SM-OPV™) technology that will enable ultra low-cost solar power generation and exciting new product capabilities, said today that its research partner Dr. Stephen R. Forrest, Vice President for Research at the University of Michigan, has secured a $1.5 million grant from the U.S. Department of Energy’s (DOE) SunShot Initiative. The grant was awarded in the “Transformational PV Science and Technology: Next Generation Photovoltaics II” category. Additional cost-share is being provided by the University of Michigan.

Dr. Forrest’s research program will further advance the development of next generation organic solar cell technology using GPEC’s proprietary small-molecule systems incorporated in a stacked architecture. Dr. Forrest is a sponsored researcher and scientific advisor of Global Photonic Energy Corporation.

This award is a further endorsement of the research that Dr. Forrest conducted under the DOE’s “Transformational PV Science and Technology: Next Generation Photovoltaics I” program awarded over three years and now coming to a close.
In transforming organic photovoltaics into a fully practical energy solution, Dr. Forrest’s new proposal is focused on addressing key commercial factors including high efficiency, high reliability and low-cost, scalable production systems. “This research program could lead to a transformation in the cost structure of solar energy conversion,” Dr. Forrest stated.

The research work will use proprietary small molecule materials in a variety of device structures to achieve significant performance, reliability and low-cost manufacturability that can incorporate, at any time, improved materials as they become available. “The proprietary core materials, device architectures and fabrication approaches are the product of our research program supported by GPEC, the DOE and other government agencies,” Forrest explained. “Small molecules are easy to purify, process and form into multilayer devices that deliver high efficiency and outstanding reliability.”
GPEC works closely with its University of Michigan research team to ensure rapid scaling and prototyping of the most promising technologies developed during the course of this program and the Company’s sponsored research.

GPEC’s SM-OPV™ technology will generate sustainable, clean electricity using lightweight and low-cost solar cells, going far beyond today's heavy, silicon-based cells that remain expensive to produce. GPEC’s SM-OPV™ technology can be applied to virtually any surface using a room-temperature technique similar to spray painting. Production methods of this sort are easily adaptable to batch, continuous and so-called “roll-to-roll” manufacturing processes and hold the promise of dramatically reduced production costs. In addition, the Company’s technology can be deployed to address a variety of exciting application needs including transparent solar windows, power-generating car paint, battery charging smart phone enclosures and solar powered fabric.

About Global Photonic Energy Corporation
Global Photonic Energy Corporation (GPEC) is a world leader in Small-Molecule Organic Photovoltaic (SM-OPV™) technologies, holding more than 425 patents issued and pending. GPEC collaborates with world-class organizations to transform the energy and photovoltaic markets. GPEC has research partnerships with the University of Southern California, the University of Michigan and Princeton University. To learn more, visit www.globalphotonic.com

Phil Allen | Global Photonic
Further information:
http://www.globalphotonic.com

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>