Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Photonic Energy Corporation’s Research Partner Wins U.S. Department of Energy Grant Under the SunShot Initiative

22.09.2011
Four-Year Effort to Accelerate Development of Cost-Competitive Solar Technologies

Global Photonic Energy Corporation (“GPEC”), a world leader in the development of Small-Molecule Organic Photovoltaic (SM-OPV™) technology that will enable ultra low-cost solar power generation and exciting new product capabilities, said today that its research partner Dr. Stephen R. Forrest, Vice President for Research at the University of Michigan, has secured a $1.5 million grant from the U.S. Department of Energy’s (DOE) SunShot Initiative. The grant was awarded in the “Transformational PV Science and Technology: Next Generation Photovoltaics II” category. Additional cost-share is being provided by the University of Michigan.

Dr. Forrest’s research program will further advance the development of next generation organic solar cell technology using GPEC’s proprietary small-molecule systems incorporated in a stacked architecture. Dr. Forrest is a sponsored researcher and scientific advisor of Global Photonic Energy Corporation.

This award is a further endorsement of the research that Dr. Forrest conducted under the DOE’s “Transformational PV Science and Technology: Next Generation Photovoltaics I” program awarded over three years and now coming to a close.
In transforming organic photovoltaics into a fully practical energy solution, Dr. Forrest’s new proposal is focused on addressing key commercial factors including high efficiency, high reliability and low-cost, scalable production systems. “This research program could lead to a transformation in the cost structure of solar energy conversion,” Dr. Forrest stated.

The research work will use proprietary small molecule materials in a variety of device structures to achieve significant performance, reliability and low-cost manufacturability that can incorporate, at any time, improved materials as they become available. “The proprietary core materials, device architectures and fabrication approaches are the product of our research program supported by GPEC, the DOE and other government agencies,” Forrest explained. “Small molecules are easy to purify, process and form into multilayer devices that deliver high efficiency and outstanding reliability.”
GPEC works closely with its University of Michigan research team to ensure rapid scaling and prototyping of the most promising technologies developed during the course of this program and the Company’s sponsored research.

GPEC’s SM-OPV™ technology will generate sustainable, clean electricity using lightweight and low-cost solar cells, going far beyond today's heavy, silicon-based cells that remain expensive to produce. GPEC’s SM-OPV™ technology can be applied to virtually any surface using a room-temperature technique similar to spray painting. Production methods of this sort are easily adaptable to batch, continuous and so-called “roll-to-roll” manufacturing processes and hold the promise of dramatically reduced production costs. In addition, the Company’s technology can be deployed to address a variety of exciting application needs including transparent solar windows, power-generating car paint, battery charging smart phone enclosures and solar powered fabric.

About Global Photonic Energy Corporation
Global Photonic Energy Corporation (GPEC) is a world leader in Small-Molecule Organic Photovoltaic (SM-OPV™) technologies, holding more than 425 patents issued and pending. GPEC collaborates with world-class organizations to transform the energy and photovoltaic markets. GPEC has research partnerships with the University of Southern California, the University of Michigan and Princeton University. To learn more, visit www.globalphotonic.com

Phil Allen | Global Photonic
Further information:
http://www.globalphotonic.com

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>