Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German High Tech Champion (eng)

23.10.2014

Fabian Zöhrer, researcher at Fraunhofer MEVIS, wins prestigious award

A software procedure that will accelerate and improve breast cancer diagnostics is ready for the market. Fabian Zöhrer, physicist at the Fraunhofer Institute for Medical Image Computing MEVIS, will receive a distinguished award.

In Chicago on December 2nd at RSNA 2014, the world’s largest radiology conference, he will be bestowed the GHTC® – the German High Tech Champions Award. This will grant him the unique opportunity to introduce his software to the world’s leading medical technology enterprises and to subsequently begin its practical application. A team of three experts is responsible for the development of the software: Fabian Zöhrer is joined by computer scientist Joachim Georgii and MEVIS Institute Director Horst Hahn.

Today, there are various methods of breast cancer diagnostic – via mammography, ultrasound, or magnetic resonance imaging (MRI). Often, when only one method is used, no reliable diagnosis can be made, especially for women with very dense breast tissue. In such cases, a combination of diagnostic methods will give different, supplementary information.

Problematic here are the different positions of the woman in all three methods. In the MR scanner, she lies on her stomach, during the ultrasound she lies on her back, and during the mammography, she stands upright. These different positions can lead to drastic changes in tumor position or suspicious areas and complicate image comparison.

The software method introduced by Zöhrer and his team can correct this flaw. ‘Multimodal position correlation’ can automatically transfer the position of a tumor from one image dataset to another with the help of an elaborate algorithm that copies the entire breast as a three-dimensional object. This virtual model is subsequently divided into many small boxes. The computer simultaneously calculates how far the position of every box will differ if the tissue changes position.

Using this procedure, a doctor can select a certain critical area in the tissue on an X-ray image. The same monitor shows an ultrasound image of the patient. A small circle automatically without delay emerges in the latter image showing the same critical area identified by the MEVIS software on the X-ray. “Doctors no longer need to reconstruct the tissue mentally to estimate where it should be seen in another image. Our software does that for them”, says Zöhrer. “It simplifies the procedure, saves time, and sometimes helps prevent errors.”

The software can be integrated in the so-called PACS viewer. These are common, commercial image storage and display programs that enable images from different methods to be displayed on a single monitor. However, workstations customized for single imaging procedures, such as mammography or MRI, can also benefit from multimodal position correlation. The method also holds promise for other fields of application. In clinical trials, it could automatically identify particular tissue areas in the images of different participants. In future computer-aided diagnosis (CAD) software, the method could also support automatic image recognition.

The award gives Zöhrer’s team the opportunity to showcase their innovation to the world’s most important medical technology companies. The prize will be bestowed at the RSNA 2014 radiology conference in Chicago. During the award ceremony and business-networking afterwards, the MEVIS researcher will have a chance to present his project to selected industry representatives and discuss promising applications and business ideas.

GHTC® – the German High Tech Champions Award is a constituent part of the collaborative project “International Research Marketing” which is a joint initiative by the Alexander von Humboldt Foundation, the German Academic Exchange Service, the Deutsche Forschungsgemeinschaft and the Fraunhofer-Gesellschaft.
All the activities within the project are part of the “Promote Innovation and Research in Germany” initiative under its brand “Research in Germany.” The initiative is funded by the German Federal Ministry of Education and Research. More information: www.research-in-germany.de

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/german-high-tech-ch...

Bianka Hofmann | Fraunhofer-Institut

More articles from Awards Funding:

nachricht Yuan Chang and Patrick Moore win prize for the discovery of two cancer viruses
14.03.2017 | Goethe-Universität Frankfurt am Main

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>