Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German-American plant evolution biologist wins MacArthur Award

23.09.2008
Kirsten Bomblies at the Max Planck Institute in Tuebingen, Germany, has been awarded a MacArthur Fellowship.

The 34-year-old evolutionary biologist will receive 500.000 Dollars over the next five years from the MacArthur Foundation. The extraordinary thing about this award: The money is not tied to a special purpose, but is designed to enable the recipient to unleash her creativity and advance her science.

The biologist, who received her doctorate only four years ago, was stunned by the news that she will receive 500.000 Dollars from the MacArthur Foundation. "The phone call from the States was the biggest surprise of my life. I still can't believe it." The Foundation awards 20 to 25 Fellowships every year not just to scientists, but also to poets, artists and entrepreneurs--the only criterion for selection is the creativity of their oeuvre. The Award is designed to enable the Fellows to explore new directions, start courageous projects or advance their careers.

Her studies at the Max Planck Institute

Since 2004, Kirsten Bomblies has been a postdoc in the group of Detlef Weigel at the Max Planck Institute for Developmental Biology in Tuebingen, Germany. There she studies how genetic incompatibilities might contribute to the evolution of new species. Her study object is the mouse ear cress, Arabidopsis thaliana, a small annual plant that is widely distributed and that became the workhorse of plant biologists throughout the world.

Kirsten Bomblies and her colleagues found that crosses between different strains of this plant surprisingly often result in unfit progeny. They do not grow well, their leaves become yellow and they often do not manage to produce flowers. Detailed studies revealed that the immune system was inappropriately activated, even though the plants had not been attacked by fungi or bacteria. Like the human immune system, the plant immune system will normally only attack and destroy infected cells.

In the sick hybrids, however, the immune system turns against healthy tissue, perhaps because it mistook its own cells for foreign invaders. The responsible genes, which only cause sickness in the hybrids, but not in the parents, are pathogen detectors. Kirsten Bomblies emphasizes that the hybrids are not victims of faulty genes: In contrast to certain hereditary autoimmune diseases, the cause is not the inactivity of defective gene copies.

Rather, the damaging interactions result from the presence of genes that evolved differently in the two parents, and that do not properly function anymore when brought back together in the hybrid offspring. Each gene on its own is at worst harmless, if not actually beneficial for the healthy parents, as it helps them to detect and defend themselves against germs. Kirsten Bomblies guesses that the incompatibilities are only side effects of an arms race between the plant and its enemies. The unintended outcomes are reproductive barriers, which may represent the first steps to the evolution of new species.

Course of her career

Kirsten Bomblies was born in Germany, but grew up in Colorado. After she received her bachelor's degree in biology and biochemistry from the University of Pennsylvania, she worked for several years as a technician in California, in her first stint with Detlef Weigel, who was a faculty member at the Salk Institute in La Jolla at the time. Kirsten Bomblies received her PhD in 2004 from the University of Wisconsin for her work on the domestication of corn. Shortly after, she returned to the study of mouse ear cress, as postdoc in the Department of Molecular Biology of the Max Planck Institute for Developmental Biology in Tuebingen, Germany. Her days there are numbered, however; next July she will start her own group as an Assistant Professor at Harvard. There, she would like to continue to study the evolution of new species, but she is also planning to work with plants other than mouse ear cress.

"Although Kirsten is only 34 years old, she is already a respected scientist who is invited to many international conferences. Her studies of hybrid incompatibilities have opened a new field in evolutionary biology. I know very few scientists who have so many original and exciting ideas as Kirsten. The MacArthur Fellowship will allow her to pursue her ideas independently of scientific fashion. I am absolutely thrilled--a great honor not only for Kirsten, but also for evolutionary biology and the freedom of science in the Max Planck Society," so her mentor, Detlef Weigel, director at the Max Planck Institute.

Contact

Kirsten Bomblies
Ph.: +49 (0) 7071-601-1405
E-Mail: Kirsten.Bomblies@tuebingen.mpg.de
Susanne Diederich (Public Relations Department)
Ph.: +49 (0) 7071-601-333
E-Mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://www.weigelworld.org/members/kirstenb

More articles from Awards Funding:

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Call for nominations of outstanding catalysis researchers for the Otto Roelen Medal 2018
20.06.2017 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>