Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German-American plant evolution biologist wins MacArthur Award

23.09.2008
Kirsten Bomblies at the Max Planck Institute in Tuebingen, Germany, has been awarded a MacArthur Fellowship.

The 34-year-old evolutionary biologist will receive 500.000 Dollars over the next five years from the MacArthur Foundation. The extraordinary thing about this award: The money is not tied to a special purpose, but is designed to enable the recipient to unleash her creativity and advance her science.

The biologist, who received her doctorate only four years ago, was stunned by the news that she will receive 500.000 Dollars from the MacArthur Foundation. "The phone call from the States was the biggest surprise of my life. I still can't believe it." The Foundation awards 20 to 25 Fellowships every year not just to scientists, but also to poets, artists and entrepreneurs--the only criterion for selection is the creativity of their oeuvre. The Award is designed to enable the Fellows to explore new directions, start courageous projects or advance their careers.

Her studies at the Max Planck Institute

Since 2004, Kirsten Bomblies has been a postdoc in the group of Detlef Weigel at the Max Planck Institute for Developmental Biology in Tuebingen, Germany. There she studies how genetic incompatibilities might contribute to the evolution of new species. Her study object is the mouse ear cress, Arabidopsis thaliana, a small annual plant that is widely distributed and that became the workhorse of plant biologists throughout the world.

Kirsten Bomblies and her colleagues found that crosses between different strains of this plant surprisingly often result in unfit progeny. They do not grow well, their leaves become yellow and they often do not manage to produce flowers. Detailed studies revealed that the immune system was inappropriately activated, even though the plants had not been attacked by fungi or bacteria. Like the human immune system, the plant immune system will normally only attack and destroy infected cells.

In the sick hybrids, however, the immune system turns against healthy tissue, perhaps because it mistook its own cells for foreign invaders. The responsible genes, which only cause sickness in the hybrids, but not in the parents, are pathogen detectors. Kirsten Bomblies emphasizes that the hybrids are not victims of faulty genes: In contrast to certain hereditary autoimmune diseases, the cause is not the inactivity of defective gene copies.

Rather, the damaging interactions result from the presence of genes that evolved differently in the two parents, and that do not properly function anymore when brought back together in the hybrid offspring. Each gene on its own is at worst harmless, if not actually beneficial for the healthy parents, as it helps them to detect and defend themselves against germs. Kirsten Bomblies guesses that the incompatibilities are only side effects of an arms race between the plant and its enemies. The unintended outcomes are reproductive barriers, which may represent the first steps to the evolution of new species.

Course of her career

Kirsten Bomblies was born in Germany, but grew up in Colorado. After she received her bachelor's degree in biology and biochemistry from the University of Pennsylvania, she worked for several years as a technician in California, in her first stint with Detlef Weigel, who was a faculty member at the Salk Institute in La Jolla at the time. Kirsten Bomblies received her PhD in 2004 from the University of Wisconsin for her work on the domestication of corn. Shortly after, she returned to the study of mouse ear cress, as postdoc in the Department of Molecular Biology of the Max Planck Institute for Developmental Biology in Tuebingen, Germany. Her days there are numbered, however; next July she will start her own group as an Assistant Professor at Harvard. There, she would like to continue to study the evolution of new species, but she is also planning to work with plants other than mouse ear cress.

"Although Kirsten is only 34 years old, she is already a respected scientist who is invited to many international conferences. Her studies of hybrid incompatibilities have opened a new field in evolutionary biology. I know very few scientists who have so many original and exciting ideas as Kirsten. The MacArthur Fellowship will allow her to pursue her ideas independently of scientific fashion. I am absolutely thrilled--a great honor not only for Kirsten, but also for evolutionary biology and the freedom of science in the Max Planck Society," so her mentor, Detlef Weigel, director at the Max Planck Institute.

Contact

Kirsten Bomblies
Ph.: +49 (0) 7071-601-1405
E-Mail: Kirsten.Bomblies@tuebingen.mpg.de
Susanne Diederich (Public Relations Department)
Ph.: +49 (0) 7071-601-333
E-Mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://www.weigelworld.org/members/kirstenb

More articles from Awards Funding:

nachricht Lasagni awarded with Materials Science and Technology Prize 2017
09.10.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht Eduard Arzt receives highest award from German Materials Society
21.09.2017 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>