Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German-American plant evolution biologist wins MacArthur Award

23.09.2008
Kirsten Bomblies at the Max Planck Institute in Tuebingen, Germany, has been awarded a MacArthur Fellowship.

The 34-year-old evolutionary biologist will receive 500.000 Dollars over the next five years from the MacArthur Foundation. The extraordinary thing about this award: The money is not tied to a special purpose, but is designed to enable the recipient to unleash her creativity and advance her science.

The biologist, who received her doctorate only four years ago, was stunned by the news that she will receive 500.000 Dollars from the MacArthur Foundation. "The phone call from the States was the biggest surprise of my life. I still can't believe it." The Foundation awards 20 to 25 Fellowships every year not just to scientists, but also to poets, artists and entrepreneurs--the only criterion for selection is the creativity of their oeuvre. The Award is designed to enable the Fellows to explore new directions, start courageous projects or advance their careers.

Her studies at the Max Planck Institute

Since 2004, Kirsten Bomblies has been a postdoc in the group of Detlef Weigel at the Max Planck Institute for Developmental Biology in Tuebingen, Germany. There she studies how genetic incompatibilities might contribute to the evolution of new species. Her study object is the mouse ear cress, Arabidopsis thaliana, a small annual plant that is widely distributed and that became the workhorse of plant biologists throughout the world.

Kirsten Bomblies and her colleagues found that crosses between different strains of this plant surprisingly often result in unfit progeny. They do not grow well, their leaves become yellow and they often do not manage to produce flowers. Detailed studies revealed that the immune system was inappropriately activated, even though the plants had not been attacked by fungi or bacteria. Like the human immune system, the plant immune system will normally only attack and destroy infected cells.

In the sick hybrids, however, the immune system turns against healthy tissue, perhaps because it mistook its own cells for foreign invaders. The responsible genes, which only cause sickness in the hybrids, but not in the parents, are pathogen detectors. Kirsten Bomblies emphasizes that the hybrids are not victims of faulty genes: In contrast to certain hereditary autoimmune diseases, the cause is not the inactivity of defective gene copies.

Rather, the damaging interactions result from the presence of genes that evolved differently in the two parents, and that do not properly function anymore when brought back together in the hybrid offspring. Each gene on its own is at worst harmless, if not actually beneficial for the healthy parents, as it helps them to detect and defend themselves against germs. Kirsten Bomblies guesses that the incompatibilities are only side effects of an arms race between the plant and its enemies. The unintended outcomes are reproductive barriers, which may represent the first steps to the evolution of new species.

Course of her career

Kirsten Bomblies was born in Germany, but grew up in Colorado. After she received her bachelor's degree in biology and biochemistry from the University of Pennsylvania, she worked for several years as a technician in California, in her first stint with Detlef Weigel, who was a faculty member at the Salk Institute in La Jolla at the time. Kirsten Bomblies received her PhD in 2004 from the University of Wisconsin for her work on the domestication of corn. Shortly after, she returned to the study of mouse ear cress, as postdoc in the Department of Molecular Biology of the Max Planck Institute for Developmental Biology in Tuebingen, Germany. Her days there are numbered, however; next July she will start her own group as an Assistant Professor at Harvard. There, she would like to continue to study the evolution of new species, but she is also planning to work with plants other than mouse ear cress.

"Although Kirsten is only 34 years old, she is already a respected scientist who is invited to many international conferences. Her studies of hybrid incompatibilities have opened a new field in evolutionary biology. I know very few scientists who have so many original and exciting ideas as Kirsten. The MacArthur Fellowship will allow her to pursue her ideas independently of scientific fashion. I am absolutely thrilled--a great honor not only for Kirsten, but also for evolutionary biology and the freedom of science in the Max Planck Society," so her mentor, Detlef Weigel, director at the Max Planck Institute.

Contact

Kirsten Bomblies
Ph.: +49 (0) 7071-601-1405
E-Mail: Kirsten.Bomblies@tuebingen.mpg.de
Susanne Diederich (Public Relations Department)
Ph.: +49 (0) 7071-601-333
E-Mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://www.weigelworld.org/members/kirstenb

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>