Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German-American plant evolution biologist wins MacArthur Award

23.09.2008
Kirsten Bomblies at the Max Planck Institute in Tuebingen, Germany, has been awarded a MacArthur Fellowship.

The 34-year-old evolutionary biologist will receive 500.000 Dollars over the next five years from the MacArthur Foundation. The extraordinary thing about this award: The money is not tied to a special purpose, but is designed to enable the recipient to unleash her creativity and advance her science.

The biologist, who received her doctorate only four years ago, was stunned by the news that she will receive 500.000 Dollars from the MacArthur Foundation. "The phone call from the States was the biggest surprise of my life. I still can't believe it." The Foundation awards 20 to 25 Fellowships every year not just to scientists, but also to poets, artists and entrepreneurs--the only criterion for selection is the creativity of their oeuvre. The Award is designed to enable the Fellows to explore new directions, start courageous projects or advance their careers.

Her studies at the Max Planck Institute

Since 2004, Kirsten Bomblies has been a postdoc in the group of Detlef Weigel at the Max Planck Institute for Developmental Biology in Tuebingen, Germany. There she studies how genetic incompatibilities might contribute to the evolution of new species. Her study object is the mouse ear cress, Arabidopsis thaliana, a small annual plant that is widely distributed and that became the workhorse of plant biologists throughout the world.

Kirsten Bomblies and her colleagues found that crosses between different strains of this plant surprisingly often result in unfit progeny. They do not grow well, their leaves become yellow and they often do not manage to produce flowers. Detailed studies revealed that the immune system was inappropriately activated, even though the plants had not been attacked by fungi or bacteria. Like the human immune system, the plant immune system will normally only attack and destroy infected cells.

In the sick hybrids, however, the immune system turns against healthy tissue, perhaps because it mistook its own cells for foreign invaders. The responsible genes, which only cause sickness in the hybrids, but not in the parents, are pathogen detectors. Kirsten Bomblies emphasizes that the hybrids are not victims of faulty genes: In contrast to certain hereditary autoimmune diseases, the cause is not the inactivity of defective gene copies.

Rather, the damaging interactions result from the presence of genes that evolved differently in the two parents, and that do not properly function anymore when brought back together in the hybrid offspring. Each gene on its own is at worst harmless, if not actually beneficial for the healthy parents, as it helps them to detect and defend themselves against germs. Kirsten Bomblies guesses that the incompatibilities are only side effects of an arms race between the plant and its enemies. The unintended outcomes are reproductive barriers, which may represent the first steps to the evolution of new species.

Course of her career

Kirsten Bomblies was born in Germany, but grew up in Colorado. After she received her bachelor's degree in biology and biochemistry from the University of Pennsylvania, she worked for several years as a technician in California, in her first stint with Detlef Weigel, who was a faculty member at the Salk Institute in La Jolla at the time. Kirsten Bomblies received her PhD in 2004 from the University of Wisconsin for her work on the domestication of corn. Shortly after, she returned to the study of mouse ear cress, as postdoc in the Department of Molecular Biology of the Max Planck Institute for Developmental Biology in Tuebingen, Germany. Her days there are numbered, however; next July she will start her own group as an Assistant Professor at Harvard. There, she would like to continue to study the evolution of new species, but she is also planning to work with plants other than mouse ear cress.

"Although Kirsten is only 34 years old, she is already a respected scientist who is invited to many international conferences. Her studies of hybrid incompatibilities have opened a new field in evolutionary biology. I know very few scientists who have so many original and exciting ideas as Kirsten. The MacArthur Fellowship will allow her to pursue her ideas independently of scientific fashion. I am absolutely thrilled--a great honor not only for Kirsten, but also for evolutionary biology and the freedom of science in the Max Planck Society," so her mentor, Detlef Weigel, director at the Max Planck Institute.

Contact

Kirsten Bomblies
Ph.: +49 (0) 7071-601-1405
E-Mail: Kirsten.Bomblies@tuebingen.mpg.de
Susanne Diederich (Public Relations Department)
Ph.: +49 (0) 7071-601-333
E-Mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tuebingen, Germany. The Max Planck Institute for Developmental Biology is one of 82 research and associated institutes of the Max Planck Society for the Advancement of Science.

Dr. Susanne Diederich | idw
Further information:
http://eb.mpg.de
http://www.weigelworld.org/members/kirstenb

More articles from Awards Funding:

nachricht ERC: Six Advanced Grants for Helmholtz
10.04.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht German Federal Government Promotes Health Care Research
29.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>