Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding through Carl-Zeiss Foundation - University of Stuttgart receives 750,000 Euros

08.08.2013
Short distances, joint use of infrastructure and a team of combined brains thinking outside the box – this is the recipe for success of the project house NanoBioMater of the University of Stuttgart, in which intelligent biocompatible function materials are jointly developed for medical technology, diagnostics and environmental analysis by biologists, chemists, material scientists and engineers. The Carl-Zeiss Foundation supports the project with a funding amount of 750,000 Euros.

Prof. Wolfram Ressel thanked the Carl-Zeiss Foundation for the aid commitment and said: “The project house NanoBioMater combines successful individual initiatives that have existed up to now and bilateral cooperations in the field of biomaterials with everything to do with the University of Stuttgart.

The funding amount of 750,000 Euros not only offers the opportunity of enhancing the international visibility of Stuttgart material sciences activities, but the project house NanoBioMater is also able to offer the basis for a successful acquisition of a future trans-regional special research field at the DFG through expedient preparatory work.”

Under the management of Prof. Sabine Laschat (Institute of Organic Chemistry) and Prof. Thomas Hirth (Institute of Interfacing Engineering and Plasma Technology), a core team comprising two university lecturers, Prof. Christina Wege (Biological Institute) and Prof. Günter Tovar (Institute of Interfacing Engineering and Plasma Technology and Fraunhofer Institute for Interfacial Engineering and Biotechnology) as well as three post-doctoral researches working in an interdisciplinary way is to press ahead with the development of new hydrogels in the project house NanoBioMater.

Natural biomaterials were created and optimised in the course of evolution. They are coordinated to their natural functions scale-independent from the molecular level on a nanometre scale through meso, micro up to macro sizes in compilation and structure. In order to support or even replace diseased organs, medical technology predominantly concentrates today on hard synthetic materials, such as metals, ceramics or polymers as well as hybrid materials from these components. The human body, however, is made up of tissues comprising cellular and extracellular, complex biomaterials. Water makes up 70 % of the human body mass; biological substances therefore appear mainly in the form of hydrogel-like structures that represent soft material per se. Hydrogel-based materials that could be produced in a biocompatible way and in almost any structure and form, therefore open up the way to urgently needed supplementary components up to the complete organ.

Due to the demographic development, the declining availability as well as the risks of donor organs and in order to reduce the number of animal experiments, there is a constantly increasing need for such “tailor-made artificial tissue” on a hydrogel basis. In addition, these are an ideal mix for biochemical detection and catalyst reactions, enabling diagnostics with bio-affine peptides and antibodies as well as enzymatic activities. In this way they also represent important components of miniaturised biosensors and "Lab-on-a-Chip" systems for environmental, food and medical analytics.

The focus of the Stuttgart researchers, supported by colleagues from the Institute of Material Sciences, Physical Chemistry, Polymer Chemistry, Technical Biochemistry and the Max-Planck Institute for Intelligent Systems as well as by a number of external cooperations with scientific facilities and companies, is initially to develop the molecular design of hydrogels, i.e. new synthetic polymer systems and low molecular cross-linkers, to optimise monomer components and to convert to new hydrogels that control the resulting gel structure and its tendency to swell and elasticity. Suitable material types are then used to develop hydrogel formulations with extended application potential. In this way super porous hydrogels are manufactured, which could serve as storage or reaction spaces. Through new processing methods for the porous hydrogel systems, in particular spray drying and inkjet print, spatially defined macroscopic systems are developed for various applications. Plant virus derivatives (e.g. derived from tobacco mosaic virus) hereby serve as robust and simultaneously “intelligent” framework components and can lend the hydrogel tailor-made sensory properties or convert it in a transport system for medicaments.

Peptides conveying mineralisation that were “copied” from nature from the adhesive proteins of mussels and barnacles as well as mineral-eliminating cells of marine organisms (corals, sea urchins) are to be used to influence the porosity of the gels and to manufacture locally hardened gel capsules. Moreover, along with the scientific processing the project house NanoBioMater makes the necessary infrastructure of appliances and analytical instruments available, takes care of questions of biocompatibility and makes contacts to users, external cooperation partners and industrial companies. Conferences and workshops are held for young researchers, cooperating researchers and companies, international experts and interested guests.

Further information:

Prof. Sabine Laschat, University of Stuttgart, Institute of Organic Chemistry,
Tel. 0711/685-64565, Email: sabine.laschat [at] oc.uni-stuttgart.de
Prof. Thomas Hirth, University of Stuttgart, Institute of Interfacial Engineering and
Plasma Technology,
Tel. 0711/970-4400, Email: thomas.hirth [at] igb.fraunhofer.de
Dr. Hans-Herwig Geyer, University of Stuttgart, University Communication,
Tel. 0711/685-82555, Email: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.igb.fraunhofer.de

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>