Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding through Carl-Zeiss Foundation - University of Stuttgart receives 750,000 Euros

08.08.2013
Short distances, joint use of infrastructure and a team of combined brains thinking outside the box – this is the recipe for success of the project house NanoBioMater of the University of Stuttgart, in which intelligent biocompatible function materials are jointly developed for medical technology, diagnostics and environmental analysis by biologists, chemists, material scientists and engineers. The Carl-Zeiss Foundation supports the project with a funding amount of 750,000 Euros.

Prof. Wolfram Ressel thanked the Carl-Zeiss Foundation for the aid commitment and said: “The project house NanoBioMater combines successful individual initiatives that have existed up to now and bilateral cooperations in the field of biomaterials with everything to do with the University of Stuttgart.

The funding amount of 750,000 Euros not only offers the opportunity of enhancing the international visibility of Stuttgart material sciences activities, but the project house NanoBioMater is also able to offer the basis for a successful acquisition of a future trans-regional special research field at the DFG through expedient preparatory work.”

Under the management of Prof. Sabine Laschat (Institute of Organic Chemistry) and Prof. Thomas Hirth (Institute of Interfacing Engineering and Plasma Technology), a core team comprising two university lecturers, Prof. Christina Wege (Biological Institute) and Prof. Günter Tovar (Institute of Interfacing Engineering and Plasma Technology and Fraunhofer Institute for Interfacial Engineering and Biotechnology) as well as three post-doctoral researches working in an interdisciplinary way is to press ahead with the development of new hydrogels in the project house NanoBioMater.

Natural biomaterials were created and optimised in the course of evolution. They are coordinated to their natural functions scale-independent from the molecular level on a nanometre scale through meso, micro up to macro sizes in compilation and structure. In order to support or even replace diseased organs, medical technology predominantly concentrates today on hard synthetic materials, such as metals, ceramics or polymers as well as hybrid materials from these components. The human body, however, is made up of tissues comprising cellular and extracellular, complex biomaterials. Water makes up 70 % of the human body mass; biological substances therefore appear mainly in the form of hydrogel-like structures that represent soft material per se. Hydrogel-based materials that could be produced in a biocompatible way and in almost any structure and form, therefore open up the way to urgently needed supplementary components up to the complete organ.

Due to the demographic development, the declining availability as well as the risks of donor organs and in order to reduce the number of animal experiments, there is a constantly increasing need for such “tailor-made artificial tissue” on a hydrogel basis. In addition, these are an ideal mix for biochemical detection and catalyst reactions, enabling diagnostics with bio-affine peptides and antibodies as well as enzymatic activities. In this way they also represent important components of miniaturised biosensors and "Lab-on-a-Chip" systems for environmental, food and medical analytics.

The focus of the Stuttgart researchers, supported by colleagues from the Institute of Material Sciences, Physical Chemistry, Polymer Chemistry, Technical Biochemistry and the Max-Planck Institute for Intelligent Systems as well as by a number of external cooperations with scientific facilities and companies, is initially to develop the molecular design of hydrogels, i.e. new synthetic polymer systems and low molecular cross-linkers, to optimise monomer components and to convert to new hydrogels that control the resulting gel structure and its tendency to swell and elasticity. Suitable material types are then used to develop hydrogel formulations with extended application potential. In this way super porous hydrogels are manufactured, which could serve as storage or reaction spaces. Through new processing methods for the porous hydrogel systems, in particular spray drying and inkjet print, spatially defined macroscopic systems are developed for various applications. Plant virus derivatives (e.g. derived from tobacco mosaic virus) hereby serve as robust and simultaneously “intelligent” framework components and can lend the hydrogel tailor-made sensory properties or convert it in a transport system for medicaments.

Peptides conveying mineralisation that were “copied” from nature from the adhesive proteins of mussels and barnacles as well as mineral-eliminating cells of marine organisms (corals, sea urchins) are to be used to influence the porosity of the gels and to manufacture locally hardened gel capsules. Moreover, along with the scientific processing the project house NanoBioMater makes the necessary infrastructure of appliances and analytical instruments available, takes care of questions of biocompatibility and makes contacts to users, external cooperation partners and industrial companies. Conferences and workshops are held for young researchers, cooperating researchers and companies, international experts and interested guests.

Further information:

Prof. Sabine Laschat, University of Stuttgart, Institute of Organic Chemistry,
Tel. 0711/685-64565, Email: sabine.laschat [at] oc.uni-stuttgart.de
Prof. Thomas Hirth, University of Stuttgart, Institute of Interfacial Engineering and
Plasma Technology,
Tel. 0711/970-4400, Email: thomas.hirth [at] igb.fraunhofer.de
Dr. Hans-Herwig Geyer, University of Stuttgart, University Communication,
Tel. 0711/685-82555, Email: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.igb.fraunhofer.de

More articles from Awards Funding:

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Scientist from Kiel University coordinates Million Euros Project in Inflammation Research
19.01.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>