Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding through Carl-Zeiss Foundation - University of Stuttgart receives 750,000 Euros

08.08.2013
Short distances, joint use of infrastructure and a team of combined brains thinking outside the box – this is the recipe for success of the project house NanoBioMater of the University of Stuttgart, in which intelligent biocompatible function materials are jointly developed for medical technology, diagnostics and environmental analysis by biologists, chemists, material scientists and engineers. The Carl-Zeiss Foundation supports the project with a funding amount of 750,000 Euros.

Prof. Wolfram Ressel thanked the Carl-Zeiss Foundation for the aid commitment and said: “The project house NanoBioMater combines successful individual initiatives that have existed up to now and bilateral cooperations in the field of biomaterials with everything to do with the University of Stuttgart.

The funding amount of 750,000 Euros not only offers the opportunity of enhancing the international visibility of Stuttgart material sciences activities, but the project house NanoBioMater is also able to offer the basis for a successful acquisition of a future trans-regional special research field at the DFG through expedient preparatory work.”

Under the management of Prof. Sabine Laschat (Institute of Organic Chemistry) and Prof. Thomas Hirth (Institute of Interfacing Engineering and Plasma Technology), a core team comprising two university lecturers, Prof. Christina Wege (Biological Institute) and Prof. Günter Tovar (Institute of Interfacing Engineering and Plasma Technology and Fraunhofer Institute for Interfacial Engineering and Biotechnology) as well as three post-doctoral researches working in an interdisciplinary way is to press ahead with the development of new hydrogels in the project house NanoBioMater.

Natural biomaterials were created and optimised in the course of evolution. They are coordinated to their natural functions scale-independent from the molecular level on a nanometre scale through meso, micro up to macro sizes in compilation and structure. In order to support or even replace diseased organs, medical technology predominantly concentrates today on hard synthetic materials, such as metals, ceramics or polymers as well as hybrid materials from these components. The human body, however, is made up of tissues comprising cellular and extracellular, complex biomaterials. Water makes up 70 % of the human body mass; biological substances therefore appear mainly in the form of hydrogel-like structures that represent soft material per se. Hydrogel-based materials that could be produced in a biocompatible way and in almost any structure and form, therefore open up the way to urgently needed supplementary components up to the complete organ.

Due to the demographic development, the declining availability as well as the risks of donor organs and in order to reduce the number of animal experiments, there is a constantly increasing need for such “tailor-made artificial tissue” on a hydrogel basis. In addition, these are an ideal mix for biochemical detection and catalyst reactions, enabling diagnostics with bio-affine peptides and antibodies as well as enzymatic activities. In this way they also represent important components of miniaturised biosensors and "Lab-on-a-Chip" systems for environmental, food and medical analytics.

The focus of the Stuttgart researchers, supported by colleagues from the Institute of Material Sciences, Physical Chemistry, Polymer Chemistry, Technical Biochemistry and the Max-Planck Institute for Intelligent Systems as well as by a number of external cooperations with scientific facilities and companies, is initially to develop the molecular design of hydrogels, i.e. new synthetic polymer systems and low molecular cross-linkers, to optimise monomer components and to convert to new hydrogels that control the resulting gel structure and its tendency to swell and elasticity. Suitable material types are then used to develop hydrogel formulations with extended application potential. In this way super porous hydrogels are manufactured, which could serve as storage or reaction spaces. Through new processing methods for the porous hydrogel systems, in particular spray drying and inkjet print, spatially defined macroscopic systems are developed for various applications. Plant virus derivatives (e.g. derived from tobacco mosaic virus) hereby serve as robust and simultaneously “intelligent” framework components and can lend the hydrogel tailor-made sensory properties or convert it in a transport system for medicaments.

Peptides conveying mineralisation that were “copied” from nature from the adhesive proteins of mussels and barnacles as well as mineral-eliminating cells of marine organisms (corals, sea urchins) are to be used to influence the porosity of the gels and to manufacture locally hardened gel capsules. Moreover, along with the scientific processing the project house NanoBioMater makes the necessary infrastructure of appliances and analytical instruments available, takes care of questions of biocompatibility and makes contacts to users, external cooperation partners and industrial companies. Conferences and workshops are held for young researchers, cooperating researchers and companies, international experts and interested guests.

Further information:

Prof. Sabine Laschat, University of Stuttgart, Institute of Organic Chemistry,
Tel. 0711/685-64565, Email: sabine.laschat [at] oc.uni-stuttgart.de
Prof. Thomas Hirth, University of Stuttgart, Institute of Interfacial Engineering and
Plasma Technology,
Tel. 0711/970-4400, Email: thomas.hirth [at] igb.fraunhofer.de
Dr. Hans-Herwig Geyer, University of Stuttgart, University Communication,
Tel. 0711/685-82555, Email: hans-herwig.geyer [at] hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.igb.fraunhofer.de

More articles from Awards Funding:

nachricht RNA: a vicious pathway to cancer ?
14.08.2017 | Goethe-Universität Frankfurt am Main

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>