Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer award for smart scooter

03.04.2014

On April 3, 2014 in Paris, the Fraunhofer-Gesellschaft will honor Fraunhofer IAO’s Daniel Borrmann as German High Tech Champion in the Urban Distribution category for his pioneering technological development, the “ElectromobileCityScooter.” This nimble, electrically driven three-wheel microcar won over the jury as a sustainable solution for the urban distribution sector and will also be making an appearance at the Hannover Messe.

As part of SITL Europe – International Week of Transport and Logistics, the award, which comes with 10,000 euros in prize money, will be presented at a gala event at the German embassy in Paris.


ElectromobileCityScooter

© Fraunhofer IAO

This will be followed by the GHTC® Networking event which, like SITL Europe itself, will give the prize-winning technology developers and inventors the chance to talk with potential business partners and to initiate R&D collaborations in other countries. 

The previous version of the ElectromobileCityScooter was the focus of international attention even at last year’s Hannover Messe, while the latest version will be on show at MobiliTec at this year’s Hannover Messe from April 7-11. Partner company GreenIng will be showcasing the smart scooter at the Baden-Württemberg International exhibition stand (Hall 27, Booth H 85).
Project managers Daniel Borrmann and Sebastian Stegmüller recall how their “baby” was born:

“The idea for the three-wheel electric scooter started life as a simple sketch and virtual model that we then built in miniature out of Lego. This little, fully functional Lego miracle gave us the idea to make a life-size demonstrator version of the scooter.”

With one wheel at the front and two behind, an electric motor and the dimensions of the average motor scooter, this three-wheeler takes up very little space in traffic and when parked. And despite its compact size, the ElectromobileCityScooter offers a comfortable ride, making it ideal for urban delivery services as well.

Featuring a suitable securing system for goods in transit, not only can it drastically reduce delivery times by speeding through traffic, it can also get into places inaccessible to conventional delivery vehicles. What’s more, its very small turning circle means no hold ups in the delivery schedule.

A safety cell enables the driver to get on and off quickly when making deliveries. Because local emissions are zero, the ElectromobileCityScooter can be driven in green zones and even into buildings such as warehouses. 

But Borrmann and Stegmüller are not content to stop with their prize-winning prototype. Further additions, such as systems for better weather protection or securing loads, are in the pipeline for this exceptional scooter. So we can all look forward to seeing what shape the smart scooter will take in the city of the future.

Contact:
Daniel Borrmann
Mobility Innovation Lab
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Telefon: +49 711 970-2030
E-Mail: daniel.borrmann@iao.fraunhofer.de

Weitere Informationen:

http://www.research-in-germany.de/dachportal/en/Campaigns-and-Activities/GHTC-Aw...
http://www.e-mobilbw.de/de/aktuelles/termine-veranstaltungen/termine-detail/mobi...
http://www.youtube.com/watch?feature=player_embedded&v=GO2X00pZanQ

Juliane Segedi | Fraunhofer-Institut

Further reports about: ElectromobileCityScooter IAO Lego conventional delivery

More articles from Awards Funding:

nachricht Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Inspired by nature - scalable chemical factory due to photomicroreactors
11.01.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>