Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer award for smart scooter

03.04.2014

On April 3, 2014 in Paris, the Fraunhofer-Gesellschaft will honor Fraunhofer IAO’s Daniel Borrmann as German High Tech Champion in the Urban Distribution category for his pioneering technological development, the “ElectromobileCityScooter.” This nimble, electrically driven three-wheel microcar won over the jury as a sustainable solution for the urban distribution sector and will also be making an appearance at the Hannover Messe.

As part of SITL Europe – International Week of Transport and Logistics, the award, which comes with 10,000 euros in prize money, will be presented at a gala event at the German embassy in Paris.


ElectromobileCityScooter

© Fraunhofer IAO

This will be followed by the GHTC® Networking event which, like SITL Europe itself, will give the prize-winning technology developers and inventors the chance to talk with potential business partners and to initiate R&D collaborations in other countries. 

The previous version of the ElectromobileCityScooter was the focus of international attention even at last year’s Hannover Messe, while the latest version will be on show at MobiliTec at this year’s Hannover Messe from April 7-11. Partner company GreenIng will be showcasing the smart scooter at the Baden-Württemberg International exhibition stand (Hall 27, Booth H 85).
Project managers Daniel Borrmann and Sebastian Stegmüller recall how their “baby” was born:

“The idea for the three-wheel electric scooter started life as a simple sketch and virtual model that we then built in miniature out of Lego. This little, fully functional Lego miracle gave us the idea to make a life-size demonstrator version of the scooter.”

With one wheel at the front and two behind, an electric motor and the dimensions of the average motor scooter, this three-wheeler takes up very little space in traffic and when parked. And despite its compact size, the ElectromobileCityScooter offers a comfortable ride, making it ideal for urban delivery services as well.

Featuring a suitable securing system for goods in transit, not only can it drastically reduce delivery times by speeding through traffic, it can also get into places inaccessible to conventional delivery vehicles. What’s more, its very small turning circle means no hold ups in the delivery schedule.

A safety cell enables the driver to get on and off quickly when making deliveries. Because local emissions are zero, the ElectromobileCityScooter can be driven in green zones and even into buildings such as warehouses. 

But Borrmann and Stegmüller are not content to stop with their prize-winning prototype. Further additions, such as systems for better weather protection or securing loads, are in the pipeline for this exceptional scooter. So we can all look forward to seeing what shape the smart scooter will take in the city of the future.

Contact:
Daniel Borrmann
Mobility Innovation Lab
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Telefon: +49 711 970-2030
E-Mail: daniel.borrmann@iao.fraunhofer.de

Weitere Informationen:

http://www.research-in-germany.de/dachportal/en/Campaigns-and-Activities/GHTC-Aw...
http://www.e-mobilbw.de/de/aktuelles/termine-veranstaltungen/termine-detail/mobi...
http://www.youtube.com/watch?feature=player_embedded&v=GO2X00pZanQ

Juliane Segedi | Fraunhofer-Institut

Further reports about: ElectromobileCityScooter IAO Lego conventional delivery

More articles from Awards Funding:

nachricht European Research Council awards Leipzig biologist a EUR 1.5 million grant
29.01.2016 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht ERC Grant for new Therapy against Burn Scars
26.01.2016 | Universität Bremen

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>