Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Focusing on vision – Dr. Martin Rolfs receives DFG funding for research on perception and attention

Three times per second, the focus of our eyes jumps from one object to another - and so does the image on the retina. Dr. Martin Rolfs examines how the brain still knows where to find important objects, and what role attention plays.

Starting from October, he will be heading an Emmy-Noether-Group at the Humboldt University, Berlin, and will be an associate member of the Bernstein Center for Computational Neuroscience, Berlin (BCCN Berlin).

The Emmy Noether program of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) encourages outstanding young researchers from around the world to set up a long-term research group in Germany.

When looking across the desk, we constantly focus on different objects – the screen, the coffee cup, the keyboard, and then the screen again. With each eye movement, these objects jump on the retina, where they are mapped onto different locations. We do not notice these jumps and can safely grab our coffee cup at any time. Therefore, our brain must always know the position of relevant objects in the perceived image. In his newly established Emmy-Noether-Group, Martin Rolfs will examine how attention contributes to stabilizing visual perception.

As Rolfs recently demonstrated, the position of important objects in the visual field is predicted even before the eye movement. “The forecasts that the brain has to provide for greater body movements are complex and need to integrate information from different areas of the brain. Under these conditions, it is absolutely unclear whether and how it is possible to direct visual attention to the relevant positions,” says Rolfs. This is a subject he would like to explore over the next five years under highly realistic conditions. In collaborations, amongst others with groups under Professor Fred Hamker and Professor Ralf Engbert, he plans to reproduce critical processing steps in the brain in theoretical models, in order to better understand the contribution of different brain regions.

Already in his diploma thesis at the University of Potsdam, Rolfs had worked on eye movements – the smallest of their kind – that scan the image while we focus on an object. After his graduation, he investigated with Professor Patrick Canvanagh in Paris and with Professor Marisa Carrascohe in New York, among other things, the interplay between perception and movement.

After four years abroad, Rolfs is now looking forward to his return to Germany: “I think the scientific community in Germany is very attractive. In particular brain research in Berlin – which features many big names - has developed greatly.” With its location at the Bernstein Center Berlin, the group is from the beginning well connected to the other Berlin competences. Leaders of Emmy-Noether groups can freely choose the amount of teaching that they want to do. “I see this as a special privilege, because it allows me to concentrate on my research without losing contact with the students,” says Rolfs.

The Emmy-Noether group will be supported by the German Research Foundation for five years and aims at (re)gaining internationally outstanding young scientists for research locations in Germany.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

For further information please contact:

Dr. Martin Rolfs
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, Haus 6
D-10115 Berlin

Dr. Simone Cardoso de Oliveira | idw
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>