Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focusing on vision – Dr. Martin Rolfs receives DFG funding for research on perception and attention

26.09.2012
Three times per second, the focus of our eyes jumps from one object to another - and so does the image on the retina. Dr. Martin Rolfs examines how the brain still knows where to find important objects, and what role attention plays.

Starting from October, he will be heading an Emmy-Noether-Group at the Humboldt University, Berlin, and will be an associate member of the Bernstein Center for Computational Neuroscience, Berlin (BCCN Berlin).

The Emmy Noether program of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) encourages outstanding young researchers from around the world to set up a long-term research group in Germany.

When looking across the desk, we constantly focus on different objects – the screen, the coffee cup, the keyboard, and then the screen again. With each eye movement, these objects jump on the retina, where they are mapped onto different locations. We do not notice these jumps and can safely grab our coffee cup at any time. Therefore, our brain must always know the position of relevant objects in the perceived image. In his newly established Emmy-Noether-Group, Martin Rolfs will examine how attention contributes to stabilizing visual perception.



As Rolfs recently demonstrated, the position of important objects in the visual field is predicted even before the eye movement. “The forecasts that the brain has to provide for greater body movements are complex and need to integrate information from different areas of the brain. Under these conditions, it is absolutely unclear whether and how it is possible to direct visual attention to the relevant positions,” says Rolfs. This is a subject he would like to explore over the next five years under highly realistic conditions. In collaborations, amongst others with groups under Professor Fred Hamker and Professor Ralf Engbert, he plans to reproduce critical processing steps in the brain in theoretical models, in order to better understand the contribution of different brain regions.



Already in his diploma thesis at the University of Potsdam, Rolfs had worked on eye movements – the smallest of their kind – that scan the image while we focus on an object. After his graduation, he investigated with Professor Patrick Canvanagh in Paris and with Professor Marisa Carrascohe in New York, among other things, the interplay between perception and movement.

After four years abroad, Rolfs is now looking forward to his return to Germany: “I think the scientific community in Germany is very attractive. In particular brain research in Berlin – which features many big names - has developed greatly.” With its location at the Bernstein Center Berlin, the group is from the beginning well connected to the other Berlin competences. Leaders of Emmy-Noether groups can freely choose the amount of teaching that they want to do. “I see this as a special privilege, because it allows me to concentrate on my research without losing contact with the students,” says Rolfs.


The Emmy-Noether group will be supported by the German Research Foundation for five years and aims at (re)gaining internationally outstanding young scientists for research locations in Germany.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

For further information please contact:

Dr. Martin Rolfs
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, Haus 6
D-10115 Berlin
E-Mail: Martin.Rolfs@bccn-berlin.de

Dr. Simone Cardoso de Oliveira | idw
Further information:
http://www.martinrolfs.de/
http://www.nncn.de/
http://www.hu-berlin.de/

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>