Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eva-Maria and Eckhard Mandelkow have been awarded the Potamkin Prize

15.04.2011
Targets for Alzheimer therapy

Drs Eva-Maria and Eckhard Mandelkow, researchers at the Max Planck Unit for Structural Molecular Biology at DESY (Hamburg) and at the German Center for Neurodegenerative Diseases (DZNE) in Bonn, have been honored with the Potamkin Prize from the American Academy of Neurology (AAN) for their contributions to the field of dementia research.

The award ceremony takes place on 14 April at the Annual Meeting of the AAN in Honolulu (Hawaii). Eva-Maria and Eckhard Mandelkow share the prize, endowed with 100 000 U.S. dollars, with Dennis Dickson (Mayo Clinic, Jacksonville, Florida). The Potamkin Prize is one of the most prestigious awards in the field of dementia research. Since 1988, this important scientific honor is donated by the Potamkin entrepreneurial family from New York.

Together with their team, Eva-Maria and Eckhard Mandelkow have achieved major breakthroughs in Alzheimer research through their work on a protein termed tau. In the normal state tau strengthens the cytoskeleton in neurons and is involved in the transport of cell organelles. But very early in Alzheimer's disease it changes, becomes detached from the cytoskeleton and lumps together as cellular debris.

In their seminal work Eva-Maria and Eckhard Mandelkow investigated the mechanism of pathological tau aggregation and showed which parts of the protein are crucial for this process. Insights from this research then allowed them to investigate the consequences of tau protein aggregation in nerve cells in more detail using mouse and cellular models. The result showed that only forms of tau that are capable of aggregation destroy the synapses of nerve cells. If these forms of tau accumulate in neurons the mice perform poorly in learning and memory tests, thus showing typical symptoms of Alzheimer's disease. If the production of toxic tau in the cells of the mice is halted, synapses regenerate and the mice recover from their memory disorder. This crucial observation shows that the disease process is in principle reversible. With this work Eva-Maria and Eckhard Mandelkow provide an important starting point for the development of potential therapies. Their investigations on tau structure and their mouse experiments now allow the identification of drugs that counteract the toxic properties of tau and - at least in mice - can combat cognitive impairment.

Dr. Eckhard Mandelkow studied physics and earned his doctorate at the Max Planck Institute for Medical Research in Heidelberg on the structure of virus proteins. In his postdoctoral training at Brandeis University (Massachusetts, USA) he looked into proteins of the cytoskeleton and then continued this line of research with a focus on the structure and function of neuronal proteins, especially of motor proteins and tau proteins and their pathological changes during neurodegeneration. He is head of a laboratory of the Max Planck Society at the German Electron Synchrotron DESY and is currently building a new research group at the DZNE site in Bonn.

Dr. Eva-Maria Mandelkow studied medicine and worked for several years as physician in the clinic and then shifted her focus to basic research. She earned her doctorate at the Max Planck Institute for Medical Research in Heidelberg on a topic in muscle physiology. In subsequent research stays at Brandeis University (Massachusetts, USA), Scripps Research Institute (La Jolla, California) and at the MRC Laboratory in Cambridge (United Kingdom) she worked on proteins of the cytoskeleton. Eva-Maria Mandelkow heads a research group at the Max Planck lab in Hamburg, which deals with cell and mouse models of Alzheimer's disease. She also moves to the DZNE in Bonn as a group leader in 2011.

Contact information:
Drs. Eva-Maria und Eckhard Mandelkow
Max Planck Research Unit for Structural Molecular Biology
c/o DESY, Notkestrasse 85, 22607 Hamburg
German Center for Neurodegenerative Diseases (DZNE)
Ludwig-Erhard-Allee 2, 53175 Bonn
Tel: +49 (0)40-89982801, +49 (0)228-43302-263
Email: office@mpasmb.desy.de, mandelkow@dzne.de
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Tel: +49 (0) 228 43302 /263
Mobil: +49 (0) 173 – 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de
http://www.mpasmb-hamburg.mpg.de
http://www.aan.com/science/awards/?fuseaction=home.info&id=13

More articles from Awards Funding:

nachricht BMBF funding for diabetes research on pancreas chip
08.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Helmholtz International Fellow Award for Sarah Amalia Teichmann
20.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>