Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant

12.12.2016

Support for translational research: Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant

Six European research teams including Dr. Michell Reimer and his team at the DFG-Center for Regenerative Therapies Dresden (CRTD) - Cluster of Excellence at the TU Dresden, received a 1.34 Million Euros ERA NET NEURON Grant for their research on spinal cord injury funded by the European Commission. The funding will start in 2017.


Dr. Michell M. Reimer

© CRTD


Countries of involved European partners

© CRTD

Dresden. Spinal cord injury results from trauma to the vertebral column, usually caused by accidents during sport activities or driving. Injury of the spinal cord is a devastating condition for the individuals who suffer not only from paralysis but also chronic pain and impairment of bodily functions such as bowel and bladder control. In addition to the physical aspects of this condition, the psychological impact is tremendous. According to the World Health Organization (WHO)*, as many as 500,000 people suffer a spinal cord injury each year*.

Humans do not regain spinal cord function after injury. However, zebrafish have the remarkable ability to functionally recover from spinal cord injury. They repair injured connections, replace damaged motor neurons and oligodendrocytes, enabling them to regain full movement within four weeks after injury. This grant now allows six European partnering institutions from Germany, France, Great Britain, Poland and Belgium to use this tropical fish to identify novel targets and mechanisms to improve the functional recovery after a spinal cord injury, test these targets in mammals and translate the findings into the human spinal cord cells. Along with the CRTD, the collaborator team includes researchers from the French National Institute of Health and Medical Research (Inserm), the University Hospital Carl Gustav Carus Dresden, the Free University of Brussels (VUB) and the Nencki Institute of Experimental Biology of the Polish Academy of Sciences. The complete project is coordinated by the University of Edinburgh (UK).

Alongside this research, the collaborators work on developing new techniques to analyze changes within the spinal cord and tools to modify identified targets. “This unique consortium of six groups in five countries combines laboratories that would not have been able to work together outside of the European Research Area Network for Neuroscience Research (ERA-NET NEURON) funding program. It is truly exciting to be part of this team and I am certain that our work will have a significant impact on spinal cord injury research”, Dr. Reimer explains. The collaborators hope their findings will reveal new therapies that could improve the lives of patients with spinal cord injury.

The study is funded by the European Commission through the European Research Area Network for Neuroscience Research (ERA-NET NEURON) and co-funded through national funding agencies. Lead researcher Professor Catherina Becker, Director of the University of Edinburgh’s Centre for Neuroregeneration, said: “This exciting project brings together leading experts from across Europe to explore the intrinsic capacity of the spinal cord to repair itself. We hope this will eventually lead to urgently needed therapies for people who have damage to their spinal cord, either from disease or injury.”

Before becoming a research group leader at the CRTD in 2014, biologist Michell Reimer worked for five years as a Post Doctoral Fellow at the Centre for Neuroregeneration and the Centre for Cognitive and Neural Systems at the University of Edinburgh (UK). From 2005-2008, Michell Reimer completed his PhD in the field of neuroscience at the Centre for Neuroregeneration, University of Edinburgh and the University Hamburg, Germany.

*http://www.who.int/mediacentre/news/releases/2013/spinal-cord-injury-20131202/en...

Research group on the CRTD website
http://www.crt-dresden.de/research/research-groups/core-groups/crtd-core-groups/...

Publications
Barreiro-Iglesias A., Mysiak, K.S., Scott, A.L., Reimer, M.M., Yang, Y., Becker, C.G., Becker, T. (2015) Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish. (Cell Reports, 13(5): 924-932)

Wishart T.M.*, Mutsaers C.A.*, Riessland M.*, Reimer M.M.*, Hunter G.*, Hannam M.L., Eaton S.L., Fuller H.R., Roche S.L., Somers E., Morse R., Young P.J., Lamont D.J., Hammerschmidt M., Joshi A., Hohenstein P., Morris G.E., Parson S.H., Skehel P.A., Becker T., Robinson I.M., Becker C.G., Wirth B., Gillingwater T.H. (2014) Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. (J Clin Invest. 2014 Mar 3. pii: 71318. doi: 10.1172/JCI71318.) * These authors contributed equally

Reimer M.M., Norris A., Patani R., Zhong Z., Ohnmacht J., Dias T.B., Kuscha V., Scott A.L., Chen Y., Frazer S.L., Wyatt C., Higashijma S., Patton L., Panula P., Chandran S., Becker T., Becker C.G.(2013) Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Developmental Cell, Volume 25, Issue 5, 478-491

Reimer M.M., Kuscha V., Wyatt C., Sörensen I., Frank R.E., Knüwer M., Becker T., Becker C.G. (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish.
J Neurosci. 29:15073-82.

Reimer M.M., Sörensen I., Frank R.E., Chong, L., Becker C.G.*, Becker T.* (2008)
Motor neuron regeneration in adult zebrafish. J Neurosci. 28:8510-16.

Press Contact
Franziska Clauß, M.A.
Press Officer
Phone: +49 351 458 82065
E-Mail: franziska.clauss@tu-dresden.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has now passed the second phase of the Excellence Initiative which aims to promote top-level research and improve the quality of German universities and research institutions. The goal of the CRTD is to explore the human body's regenerative potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases, and bone regeneration. At present, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.

www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Awards Funding:

nachricht Innovation Award of the United Nations Environment Programme for PhD Student from ZMT
22.03.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht ERC Project set to boost application of adhesive structures
19.03.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>