Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


EU supports projects on atmosphere research with 36 million euros

The research cluster “Aerosols and Climate“ starts at the AWI Potsdam

The new research cluster “Aerosols and Climate” started on Thursday 5 December with a kick-off meeting at the Potsdam Research Unit of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). It brings together three projects, which deal with the interactions between aerosols and climate.

The scientists involved want to minimise the great uncertainties in understanding the aerosol processes, which are emphasised in the last World Climate Report (IPCC). The EU is supporting the cluster in the coming four and a half years with a total of 36 million euros.

The role of the aerosols has so far been one of the greatest unknowns in climate predictions. Aerosols – small droplets or particles floating in the air – reflect a part of the sunlight before it reaches the ground and they also radiate heat themselves. Furthermore they play an important role in the formation of clouds and influence the chemistry of the atmosphere. The formation of aerosols is frequently dependent on climate processes. This complicated interaction has not so far been correctly reflected in global climate models.

“We do not understand many of the processes adequately to be able to correctly reflect the variations of aerosols in the atmosphere in climate models”, explains Dr. Markus Rex, atmosphere researcher at the Potsdam Research Unit of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. For example, there are sulphuric acid droplets high above the Arctic, which considerably influence the Arctic climate. However, scientists have so far only had a rough understanding of their origin. “We know that the sulphur originates from the Tropics and we suspect that the resultant aerosols are transported in the Asiatic monsoon over the Himalayas to the Polar stratosphere”, says Markus Rex.

However, where the aerosols precisely come from and why the stratospheric aerosol layer is subject to great fluctuations even if no volcanoes are active is currently unclear. As part of the StratoClim project, he and his colleagues want to conduct measurements in the Asian monsoon using a high-altitude research aircraft and set up a new measurement station in the tropical Western Pacific. Rex explains: “We first need to understand the processes about which quantities of aerosols are transported how and under which conditions. We then reflect these processes using detailed mathematical models. These results are then incorporated into global climate models, thereby reducing the uncertainties of future scenarios.”

To concentrate competences in aerosol research, the EU has merged three research applications in a cluster. The research cluster was launched on 5 December with the public presentation of the three projects starting in the Albert Einstein Science Park in Potsdam. The project members met in closed workshops in the afternoon.

Background to the EU cluster “Aerosols and Climate”
“Aerosols and Climate” brings together three projects:
• DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa) headed by Prof. Peter Knippertz from the Karlsruhe Institut für Technologie (KIT)
• BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) under the lead of Prof. Ulrike Lohmann from the ETH Zürich

• StratoClim (Stratospheric and upper tropospheric processes for better climate predictions), which is led by Dr. Markus Rex from AWI Potsdam.

Further information is available at

Notes for Editors: Your contact persons at the Alfred Wegener Institute in Potsdam is Dr. Markus Rex (phone +49 331 288-2127; e-mail: Your contact person in the Department of Communications and Media Relations is Dr. Folke Mehrtens (phone +49 471 4831-2007; e-mail:

Please find printable images on our website:

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:

More articles from Awards Funding:

nachricht VDI presents International Bionic Award of the Schauenburg Foundation
26.10.2016 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Changing the Energy Landscape: Affordable Electricity for All
20.10.2016 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>