Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU supports projects on atmosphere research with 36 million euros

06.12.2013
The research cluster “Aerosols and Climate“ starts at the AWI Potsdam

The new research cluster “Aerosols and Climate” started on Thursday 5 December with a kick-off meeting at the Potsdam Research Unit of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI). It brings together three projects, which deal with the interactions between aerosols and climate.

The scientists involved want to minimise the great uncertainties in understanding the aerosol processes, which are emphasised in the last World Climate Report (IPCC). The EU is supporting the cluster in the coming four and a half years with a total of 36 million euros.

The role of the aerosols has so far been one of the greatest unknowns in climate predictions. Aerosols – small droplets or particles floating in the air – reflect a part of the sunlight before it reaches the ground and they also radiate heat themselves. Furthermore they play an important role in the formation of clouds and influence the chemistry of the atmosphere. The formation of aerosols is frequently dependent on climate processes. This complicated interaction has not so far been correctly reflected in global climate models.

“We do not understand many of the processes adequately to be able to correctly reflect the variations of aerosols in the atmosphere in climate models”, explains Dr. Markus Rex, atmosphere researcher at the Potsdam Research Unit of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. For example, there are sulphuric acid droplets high above the Arctic, which considerably influence the Arctic climate. However, scientists have so far only had a rough understanding of their origin. “We know that the sulphur originates from the Tropics and we suspect that the resultant aerosols are transported in the Asiatic monsoon over the Himalayas to the Polar stratosphere”, says Markus Rex.

However, where the aerosols precisely come from and why the stratospheric aerosol layer is subject to great fluctuations even if no volcanoes are active is currently unclear. As part of the StratoClim project, he and his colleagues want to conduct measurements in the Asian monsoon using a high-altitude research aircraft and set up a new measurement station in the tropical Western Pacific. Rex explains: “We first need to understand the processes about which quantities of aerosols are transported how and under which conditions. We then reflect these processes using detailed mathematical models. These results are then incorporated into global climate models, thereby reducing the uncertainties of future scenarios.”

To concentrate competences in aerosol research, the EU has merged three research applications in a cluster. The research cluster was launched on 5 December with the public presentation of the three projects starting in the Albert Einstein Science Park in Potsdam. The project members met in closed workshops in the afternoon.

Background to the EU cluster “Aerosols and Climate”
“Aerosols and Climate” brings together three projects:
• DACCIWA (Dynamics-aerosol-chemistry-cloud interactions in West Africa) headed by Prof. Peter Knippertz from the Karlsruhe Institut für Technologie (KIT)
• BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) under the lead of Prof. Ulrike Lohmann from the ETH Zürich

• StratoClim (Stratospheric and upper tropospheric processes for better climate predictions), which is led by Dr. Markus Rex from AWI Potsdam.

Further information is available at http://www.Aerosols-Climate.org/.

Notes for Editors: Your contact persons at the Alfred Wegener Institute in Potsdam is Dr. Markus Rex (phone +49 331 288-2127; e-mail: Markus.Rex@awi.de). Your contact person in the Department of Communications and Media Relations is Dr. Folke Mehrtens (phone +49 471 4831-2007; e-mail: medien@awi.de).

Please find printable images on our website: http://www.awi.de/en/news/press_releases/

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en/news/press_releases/
http://www.Aerosols-Climate.org/

More articles from Awards Funding:

nachricht Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Otto Hahn Medal for Jaime Agudo-Canalejo
21.06.2017 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>