Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU sponsors sustainable City Concepts

10.10.2014

European Commission nominates Fraunhofer Smart Cities project as lighthouse project

The European Commission has nominated the Triangulum project, led by Fraunhofer IAO and with the support of the Steinbeis-Europa Zentrum (SEZ), to be the lead project for the Smart Cities and Communities initiative. This project will transform designated urban districts into smart quarters in three forerunner cities and then transfer the concepts to three further cities. 23 European partners from urban municipalities, research, and industry are involved.


European Commission nominates Fraunhofer Smart Cities project as lighthouse project

© Fraunhofer IAO

For its concept to develop smart urban districts, a consortium will develop a strategic partnership under the auspices of the Smart Cities and Communities initiative and will be led by Fraunhofer IAO. The project name Triangulum stands for the three points demonstrate, disseminate and reciprocate. The project will implement pioneering concepts in the three cities of Manchester (UK), Eindhoven (Netherlands), and Stavanger (Norway) with support from the European Union. Subsequently, the concepts will be transferred to Leipzig (Germany), Prague (Czech Republic), and Sabadell (Spain). The project emerged from the Fraunhofer-Gesellschaft’s Morgenstadt (city of tomorrow) initiative.

“Our goal is to find viable solutions to make cities sustainable, smart, and livable in the future. To achieve this, we’re implementing pioneering concepts for sustainable energy supply, mobility, and information technology, initially in three selected cities,” explains Alanus von Radecki, project manager at Fraunhofer IAO, who has the lead role in the project.

Triangulum will transform the student quarter in Manchester known as the Corridor, which contains around 72,000 students, into a smart city district. This will entail renovating historical buildings and building up an autonomous energy grid to supply the entire district with heat and electricity. The grid will combine geothermal and district heating with two independently operating electricity grids and a fuel cell that can store excess energy. In addition, all conventional cars are to be banished from the district: according to the scientists’ vision, only electric vehicles, bicycles, and the city’s “Metrolink” electric tram will be allowed in the Corridor.

In Eindhoven, two districts will be transformed into sustainable living environments during the course of the project. The former Philips industrial complex in the “Strijp-S” neighborhood will become a creative smart district. An innovative concept to clean up contaminated land will double as a means of producing energy. A district-wide ICT solution will allow residents to access different kinds of infrastructure, such as booking electric vehicles from a district car sharing scheme or using smart parking concepts. In this way, the IT-based tool will help residents to develop sustainable patterns of energy and mobility behavior. In addition, electric buses will make city traffic more eco-friendly. A different set of challenges is posed by the Eckart-Vaartbroek district, where energy-efficiency renovations will be carried out on the social housing stock that predominates in this area. In order to precisely calculate the energy savings, the project will use an IT-based instrument capable of modeling costs and yield in a 3D visualization of the district.

For the inhabitants of the Norwegian city of Stavanger, electric vehicles are already a familiar sight. In spite of this, the city with the highest density of electric vehicles in Europe wants to be more than that, and would like to be a motor for development and growth.. A high-performance fiber optic network will ensure that data can be exchanged very rapidly. Various energy and mobility projects based on existing high-speed ICT infrastructure will help Stavanger to cleverly integrate energy and mobility solutions. Through sustainable, integrated solutions, Stavanger will lead the way to smarter cities in which companies, people, research institutes and communities can be connected in order to improve urban environments and encourage regional growth. The project also includes new public services, such as video solutions, that leverage the fiber optic infrastructure.

Consequently a secondary linchpin of the project is civic engagement and promoting citizen participation through workshops. “At the heart of our project is an ICT architecture that will be used in all three flagship cities. It is the foundation that enables the individual technologies in the city to be connected and coordinated with each other,” says Alanus von Radecki. This standardized architecture also ensures that it will be possible to subsequently transfer the concepts to other cities – as will be demonstrated when the project moves to its second phase in Leipzig, Prague, and Sabadell.

Triangulum was selected out of a total of 19 submissions by the European Commission to be part of the Smart Cities and Communities initiative and was also selected for a strategic partnership within the Horizon 2020 framework. The Steinbeis-Europa-Zentrum accompanied the Fraunhofer IAO in the application process and will assist with administrative, financial and legal project coordination as well as the dissemination of project results.

Our scientific director of the Fraunhofer IAO work in a project consortium together with the following cities and research institutions and industrial partners:

Project coordinators
Fraunhofer Institute for Industrial Engineering IAO | Steinbeis-Europa-Zentrum

Participating partners
Institute for Human Factors and Technology Management (IAT) of the University of Stuttgart

Manchester (UK)
Manchester City Council | The University of Manchester | The Manchester Metropolitan University | Siemens plc | Clicks and Links LTD

Eindhoven (Netherlands)
Municipality of Eindhoven | Park Strijp Beheer B.V. | Stichting Woonbedrijf SWS.Hhvl | Eindhoven University of Technology | Strijp-S. Ontwikkeling B.V. | Koninklijke KPN N.V.

Stavanger (Norway)
Stavanger Municipality | Greater Stavanger Economic Development AS | Rogaland Fylkeskommune | The University of Stavanger | Lyse Energi AS

Participating partners from the follower cities
Prague Institute of Planning and Development (Czech Republic) | City of Sabadell (Spain) | City of Leipzig (Germany) | TÜV SÜD AG (Germany)

Contact:
Alanus von Radecki
Urban Systems Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2169
E-Mail alanus.radecki@iao.fraunhofer.de

Nora Fanderl
Urban Systems Engineering
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2301
E-Mail nora.fanderl@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/mobility-and-urban-systems-e...

Juliane Segedi | Fraunhofer-Institut

More articles from Awards Funding:

nachricht Radio astronomers score high marks in the competition for EU funding
12.01.2017 | Max-Planck-Institut für Radioastronomie

nachricht Europe wide cooperation on spinal cord injury research receives 1.34 Million Euros grant
12.12.2016 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>